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Resolution of debates in cognition usually comes from the introduction of constraints in the form of new
data about either the process or representation. Decision research, in contrast, has relied predominantly
on testing models by examining their fit to choices. The authors examine a recently proposed choice
strategy, the priority heuristic, which provides a novel account of how people make risky choices. The
authors identify a number of properties that the priority heuristic should have as a process model and
illustrate how they may be tested. The results, along with prior research, suggest that although the priority
heuristic captures some variability in the attention paid to outcomes, it fails to account for major
characteristics of the data, particularly the frequent transitions between outcomes and their probabilities.
The article concludes with a discussion of the properties that should be captured by process models of
risky choice and the role of process data in theory development.
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Decision research has largely progressed through the use of models
that account solely for observed choices and that say little of the
underlying cognitive processes. Great progress has been made in
developing descriptive models of human choice behavior, in part
through the design of clever experiments. However, there are several
cases in which quite different processes are proposed to account for
the same outcome data. One example is widely studied in decision
making: choice between gambles. A stark contrast exists between
integration models, such as prospect theory (Kahneman & Tversky,
1979; Tversky & Kahneman, 1992) and others, all of which are
modifications of the expected utility model that integrate probabilities
and payoffs, and other heuristic models such as the priority heuristic
(Brandstätter, Gigerenzer, & Hertwig, 2006) and others (see Payne,
Bettman, & Johnson, 1993, for a review), which do not integrate these
kinds of information, yet are also thought to describe choice data. In

this comment, we argue that decision research will progress more
quickly by doing more than simply assessing the predictions of as-if
models (termed “paramorphic” by Hoffman, Slovic, & Rorer, 1968)
and instead focusing on approaches that provide richer descriptions of
processes and representations. Such models can also be tested on a
functional (process) level rather than just on their outcome predic-
tions, leading to the quicker modifications of models and the devel-
opment of better models through the incorporation of added con-
straints. Although there have been historical calls for such a shift
(Einhorn, Kleinmuntz, & Kleinmuntz, 1979), there has been little
integration of these two traditions.

In this article, we illustrate this point by developing a set of process
predictions implied by the priority heuristic (PH), a model posited by
Brandstätter et al. (2006) that demonstrates impressive predictive
strength in the aggregate and provides accounts for several decision-
making phenomena such as Allais’ paradox, risk-seeking and risk-
aversion behavior elicited by different levels of probability and out-
come, the certainty effect, and intransitive preferences. Within the
limitations on the applicability of the heuristic,1 Brandstätter et al.
argued that it provides a better account of choices normally explained
by alternative theories. The PH is an ideal example because it is

1 Limitations suggested by Brandstätter et al. (2006) included the fol-
lowing: The heuristic does not apply for gambles where one option dom-
inates the other and where expected values are “strikingly” different.
Individual differences may account for different orders and different aspi-
ration levels. Low stakes can result in the same reversals as individual
differences. Discrepant EVs result in the PH making incorrect predictions
(e.g., with the Erev, Roth, Slonim, & Barron, 2002, data). Differences in
choices manipulated by problem representation (combination from three to
two options in a gamble) as shown by Birnbaum (2004) are not predicted
by PH.
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ambitious and goes beyond simply predicting choices; it represents a
process model for making these choices, predicting, for example,
what information will receive attention and what will be ignored.
Thus, Brandstätter et al. argued, the PH should not only provide
superior predictions of the output of a choice process but also account
for information acquisition as well. Brandstätter et al. did report
reaction time data consistent with the PH, but the purpose of this
comment was to illustrate the theoretical value of combining stronger
process predictions and more informative data for this and other
proposed models of choice and inference.

Recent Developments in Process Tracing

Monitoring the information used in the course of making a
decision provides one common source of data to describe decision
processes. Early applications used manual retrieval during deci-
sions (Bettman & Jacoby, 1976; Payne, 1976) and eye movement
recording (Russo & Rosen, 1974) followed by the analysis of click
streams in computer-based environments. Recently, these
computer-based approaches have been adopted in economics as
well (Costa-Gomes & Crawford, 2006; Costa-Gomes, Crawford,
& Broseta, 2001; Gabaix, Laibson, Moloche, & Weinberg, 2006;
Johnson, Camerer, Sen, & Rymon, 2002). For example, Costa-
Gomes et al. (2001) used information acquisition data to signifi-
cantly improve the prediction of choices and the classification of
people into strategic types.

This increased adoption has been due to the development of
better theory linking information acquisition to the underlying
choice process. Costa-Gomes et al. (2001) suggested two proper-
ties that strengthen the mapping of acquisition to process. The first,
occurrence, appeals to a simple assumption: Information not ac-
quired by the decision maker cannot be used by a hypothesized
strategy. The second, adjacency, suggests that information used in
temporal proximity by a proposed strategy should be acquired in
close proximity. For adjacency to hold, one must assume that the
information needed by the strategy is easier to acquire than to
memorize, a fact that can be empirically tested. Thus, if one sees
little or no acquisition of outcomes with small probabilities, one
would conclude by occurrence that these probabilities do not affect
choices. Similarly, if we see repeated acquisitions of outcomes and
their probabilities, we might assume, by adjacency, that the eval-
uation of the outcomes in some way depend on probabilities.

Process Predictions for the PH

At an abstract level, there are three components of the PH. For
two-outcome gambles only containing gains these components are
as follows:

1. Priority rule.—Consider reasons in the following order:
minimum gain, probability of minimum gain, maximum
gain.

2. Stopping rule.—Stop examination if the minimum gains
differ by 1/10 (or more) of the maximum gain (aspiration
level); otherwise, stop examination if probabilities differ
by 1/10 (or more) of the probability scale.

3. Decision rule.—Choose the gamble with the more attrac-
tive gain (probability).

For gambles with more than two outcomes, the priority rule adds
a fourth reason in the first component: the probability of maximum
gain.

These processes provide additional constraints that can be used
to assess the PH. Brandstätter et al. (2006, p. 424) suggested one
example of such a constraint using the order of information ac-
quisition suggesting that information should be considered in the
order minimum gain, probability of minimum gain, and maximum
gain.

It is possible to develop a more precise set of predictions by
using occurrence and adjacency. First, we translate the rules for-
mulated in the PH into a production systemlike set of process steps
following Newell and Simon (1972) and Johnson and Payne
(1985). Consider the choice between Gamble A, which pays
$3,000 with a probability of 0.75, or $4,000 with a probability of
0.25, and Gamble B with a $5,000 payoff and a probability 0.20,
and a $2,800 payoff with a probability of 0.80. We labeled the
payoffs, or amounts to Win, Wa

1. . . . Wb
n. The subscripts identify the

gamble, a or b, and the superscripts identify the position of the
payoff, using reading order (left to right, top to bottom) in the
display. Each outcome has an associated probability that is labeled
Pa

1 . . . Pb
n. Thus, the second outcome of Gamble A, $4,000, is

labeled Wa
2, and its probability, 0.25, is Pa

2. To identify the rank
order of the outcomes from minimum to maximum, we exchange
the superscript denoting its position in the display with min and
max. For example, the $4,000 outcome for Gamble A, which is its
maximum payoff, is now Wa

max, with Pa
max as its probability. Figure

1 presents the display we used to present this gamble to partici-
pants.

Using this notation, the three stages can be represented by a
series of process steps.

Step 1. READING: The first step follows from Brandstätter et
al. (2006, p. 424), who posited that the PH, like all heuristics,
contains an exploratory state in which every piece of information
is read in order to identify the relevant items. Thus, because a
decision maker may not know the location of relevant information
in a gamble display, they must first scan the gambles to locate it.
Once this initial stage is finished, the choice phase begins entailing
the following steps:

Step 2. CALCULATE .1 � Wa
max (aspiration level).

Step 3. ESTIMATE DIFFERENCE Wa
min, Wb

min.

Step 4. IF Step 3 � Step 2, THEN stop ELSE Step 5
(one-reason stopping rule).

Step 5. ESTIMATE DIFFERENCE Pa
min, Pb

min.

Step 6. IF Step 5 � .10, THEN stop ELSE Step 7 (two-
reason stopping rule).

Step 7. CHOOSE the alternative with the greater Wmax

(three-reason stopping rule).

On the basis of these steps, we developed a set of hypothesized
properties for the PH for both the attention (frequency and dura-
tion), given each of the gamble elements, and the transitions
between the elements. We label these measures f, d, and t, respec-
tively.
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To organize these predictions, Figure 2 presents an icon graph
portraying attention and transition predictions in a compact form
(Johnson et al., 2002). The height of each rectangle in an icon
graph represents f, the mean acquisition frequency, and the width
represents d, the mean total (i.e., over all acquisitions) duration of
attention to that cell. Thus, bigger boxes mean more attention. The
location of the boxes corresponds to the display in Figure 1. The
arrows and their length portray t, the mean number of transitions
between items in the display. Starting with the substantively more
interesting choice phase, we argue that the PH suggests three
families of hypotheses.

Hypothesis 1: The choice hypothesis: In the choice phase,
comparisons between similar elements of Gambles A and B
are used in the PH (e.g., Wa

max and Wb
max), and not, as in

integration models, transitions within a gamble (e.g., Pa
max

and the Wa
max). An additional property is that the probabilities

of the maximum outcome are irrelevant to the decision maker.
However, the processes embodied by the PH are contingent
upon the choices themselves because of the following:

Hypothesis 1a: One-reason choices stop at Step 4 above.
Thus, transitions between the two minimum payoffs should
be made (Wa

min, Wb
min) in order to execute Step 3, but there

should be few transitions between the minimum probabilities
and maximum payoffs because Steps 5–7 are not executed.
Similarly, attention measures in choice should reflect this
pattern.

Hypothesis 1b: Three-reason choices require the execution of
Steps 5–7. This means that, in addition to the transitions
above, we should see attention to all outcomes (Wa

max, Wb
max,

Wa
min, Wb

min), and the probabilities of the minimum outcomes
(Pa

min, Pb
min), and transitions between those elements of the

gamble, should be greater for three-reason gambles than for
one-reason gambles.

Hypothesis 2: The probability-payoff hypothesis: Because the
PH explicitly suggests that probabilities and payoffs are not
integrated, transitions between an outcome and its probability
should be relatively infrequent. We test this by comparing the

number of transitions between Ws and Ps with the number of
all other possible transitions. If t(x,y) represents the number of
transitions between two cells x and y, independent of direc-
tion, then we expect t(Pa

max,Wa
max) � t(Pa

min, Wa
min) � t(Pb

max,
Wb

max) � t(Pb
min, Wb

min) � t(Wa
max, Wb

max) � t(Wa
min, Wb

min) �
t(Pa

min, Pb
min). In Figure 2, this corresponds to a surplus of

vertical arrows and a deficit of horizontal ones.

Hypothesis 3:The reading hypothesis: In the reading phase,
comparisons of outcomes within each gamble are used in PH
to find its smallest and largest payoffs (turning Wa

1 and Wa
2

into Wa
min and Wa

max etc.). Additionally, we should observe
more attention (frequency and duration) for all Ws than for all
Ps (because the Ps are irrelevant to finding the largest pay-
offs) as well as a larger number of transitions within all Ws
than within all Ps (see Table 2 for details of the test).
Identifying the max and min outcome for each gamble is
sufficient for reading, and because each probability is
uniquely associated with a payoff, identifying the max and
min outcomes also identifies what probability is associated
with that outcome, and, strictly speaking, acquiring probabil-
ities is not necessary.

Figure 2 summarizes predictions for the reading (left) and
choice (right) phases and one-reason (top) and three-reason (bot-
tom) choices. As displayed in the figure, we expect the reading
phase (left half of the figure) to have large boxes for the Ws, with
many transitions among them, and small boxes and few transitions
for the Ps. Because the details of the reading phase are not as well
specified, or as substantively important as the details of the choice
phase, they receive less attention in our analyses. We also note that
this set of hypotheses is an illustrative subset of implications of the
PH, focusing on the properties uniquely associated with the heu-
ristic.

Empirical Example

We used 16 of the 40 original gambles from the response time
experiment of Brandstätter et al. (2006), using their categorization
of choices according to number of outcomes and necessary reasons
to make a choice. We used four choices of each resulting type

Figure 1. Screenshot of a MouselabWEB gamble with the Mouse opening box Wa
2, that is, $4,000.

265COMMENTS



(two- or five-outcome choices that required either one or three
reasons). The position of the gambles in the display, order, etc.,
was counterbalanced to control for reading order. Respondents
made choices in a Web browser running MouselabWEB (Willem-
sen & Johnson, 2006), which captured acquisition times and search
patterns. For methodological details, see Appendix A.

To examine the empirical predictions of the PH, we distinguish
between the reading and choice phases. The reading phase was
identified as all acquisitions made before all outcomes have been
examined at least once. The choice phase consisted of all subse-
quent acquisitions. (For a similar rule, see Klayman, 1983.)

Adjacency does seem to hold for these data. Although we
removed very brief acquisitions, there are many acquisitions and
reacquisitions of the information: For the two outcome gambles,
the eight cells were acquired a total of 26.7 times (an average 3.3
times per cell). Overall decisions took, on average, 21.0 s.

We first examine each of our hypotheses using a graphic display
and then report the results of more formal statistical tests. Figure
3 presents an icon graph of the observed data, for two-outcome
gambles, similar to the prediction graph in Figure 2. The lower
left-hand corner presents a scale for each measure. Thus, in the
reading phase, the maximum amount to win for Gamble A, Wa

max,
is examined, on average, for 912 ms, acquired 1.15 times, and
transitions between this box and its probability Pa

max occur .63
times.

The choice hypothesis (Hypothesis 1a, see also Figure 2) pre-
dicts that for one-reason choices, one pair of outcomes, Wa

min and

Wb
min, receives the most attention and dominates the transitions.

Figure 3 shows, in the top right, that this did not occur in our data:
These boxes do not receive more attention, nor are there substan-
tially more transitions between the two minimum gain outcomes.
Attention, instead, is more evenly distributed across payoffs and
probabilities.

For three-reason choices (Hypothesis 1b, Figure 3 bottom right),
the choice hypothesis predicts that additional time will be spent
comparing the probabilities of the minimum outcomes, Pa

minand
Pb

min, and the maximum outcomes, Wa
max and Wb

max. However,
although the picture looks very similar to that for one-reason
choices, there are differences in the attention given to outcomes
and probabilities when we compare one- and three-reason choices.
Although there is a slight increase in the number of between-
gamble transitions, consistent with the PH, the predicted additional
attention to the probabilities of the minimum outcomes (Pa

min,
Pb

min) is not apparent, and there is significant attention given to the
probabilities of the maximum outcomes, which, according to the
PH, should be ignored in both one-reason and three-reason
choices.

The probability-payoff hypothesis (Hypothesis 2) suggests that
transitions between outcomes and their corresponding probabilities
should be rare. In fact, this is the most common transition, and this
pattern appears in both reading and choice phases and for one- and
three-reason choices. Note that the transition between a payoff and
an unassociated probability (e.g., Pa

min and Wa
max) serves as one

control for accidental transitions. Although they occur, they are

Figure 2. Icon graphs presenting predictions of the priority heuristic for reading phase (left column) and choice
phase (right column), separately for one (top row) and three-reason (bottom row) gambles. Boxes with white
backgrounds receive minimal attention. Within a graph, each rectangle corresponds to one of the cells in
Figure 1.
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much less frequent than those between that probability and its
outcome.

Finally, the reading hypothesis (Hypothesis 3) predicts that in
the reading phase, we should primarily see transitions between the
outcomes within a single gamble (e.g., Wa

max, Wa
min, and Wb

max,
Wb

min, etc.), as seen in the left half of Figure 2. The results in the
left half of Figure 3 are very different from the predictions and
show roughly the same amount of information acquired for out-
comes and probabilities. Figure 3 also reveals that there are very
few of the transitions predicted by the PH that compare the payoffs
to determine which are greater and which are smaller.

To provide more formal tests of the observations contained in
Figure 3, we used a random coefficients model (see Costa-Gomes
et al., 2001; Willemsen, Böckenholt, & Johnson, 2006, for a
similar approach) that allows intercepts to vary across respondents
as well as heterogeneity in how much processing occurs in each
phase (see Appendix B for details). Table 1 reports the means and
resulting contrasts that represent these hypotheses for the number
of acquisitions f, the duration of looking time d, and number of
transitions t. The last column summarizes the result for each
hypothesis. Note that stronger tests of the PH are possible. For
example, whereas a strong test would suggest that no acquisitions
of probability information should occur in the reading phase, or
that such acquisitions should occur at a chance rate, we actually

conducted a less stringent test that requires simply that there are
significantly more acquisitions of outcomes than probabilities.

For the choice hypotheses (Hypothesis 1a), describing one-
reason choices, the data failed to show significant differences in
the expected direction for frequency, duration, and transitions. For
the three-reason choices (Hypothesis 1b), attention did shift in the
predicted directions, but this difference was most significant for
the minimum probabilities. This shift was accompanied by a small
but significant increase in the appropriate transitions. The most
striking result contradicts the probability-payoff hypothesis (Hy-
pothesis 2) that predicts that between-gamble transitions will be
more frequent than payoff-probability transitions. Confirming the
visual impression from Figure 3, this result is significant, but in the
opposite direction: These transitions are, in fact, much less fre-
quent than those between probabilities and payoffs. Consistent
with the reading hypothesis (Hypothesis 3), frequencies and dura-
tion show significantly more attention paid to payoffs during
reading. However, the pattern of transitions was, in fact, signifi-
cant in the opposite direction than the PH would predict.

We conducted a similar analysis for five-outcome gambles.
Because of space constraints, we only report that the results are
similar to those in Figure 3. Table 2 presents the contrasts for the
five-outcome gambles following the same structure as the analysis
for the two-outcome gambles. Consistent with Hypothesis 3, pay-

Figure 3. Icon graph of the observed data by phase and gamble type, corresponding to the predictions in
Figure 2. For each, rectangle height represents the frequency of acquisition, and width represents the total
duration. The length of arrows corresponds to the frequency of transitions. For clarity, transitions occurring
fewer than an average of .15 per trial are not displayed. Ticks represent 400 ms and .5 acquisitions.
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offs receive more attention and result in more transitions during
reading. Another prediction made by the PH for the five-outcome
data is that the intermediate outcomes, those that are not the
minimum or the maximum payoffs of the gamble, should not affect
choice or receive attention. In fact, the three intermediate out-
comes received substantial attention in our data: On average, these
“irrelevant” outcomes and probabilities got more attention (exam-
ined for 9.8 s during 13.6 acquisitions) than the maximum and
minimum outcomes (examined for 9.5 s during 13.2 acquisitions).

Ordinal Tests

Brandstätter et al. (2006) suggested that information should be
considered in a particular order, with the minimum gain first,
followed by probability of minimum gain and then maximum gain.
We calculated the mean rank of each acquisition separately for the
reading and choice phases, as a function of choice, and tested these
ranks for differences. The mean rank acquisition, in the order
hypothesized by the PH, was 9.75 for Wmin, 9.71 for Pmin, and
10.13 for Wmax. There was no significant difference in the order in
which each reason was accessed, either as a main effect, as
hypothesized by Brandstätter et al., or within phase or choice type.

Similarly, we examined the final comparison for each choice,
based on the notion that this should differ for one- and three-reason
choices. For one-reason choices, the final transition should be
between the minimum outcomes t(Wa

min, Wb
min) dictated by Step 3,

and for three-reason choices, it should be a transition t(Wa
max,

Wb
max) suggested by Step 7. We found that a small proportion of all

choices ended with the predicted transitions. Transitions between
Wa

min and Wb
min were the last transition for only 2.3% of the

one-reason choices and 0.8% for three-reasons choices, and

t(Wa
max,Wb

max) occurred 2.3% and 4.5% of the time for one- and
three-reason choices, respectively. These frequencies did not differ
significantly, �2(1, N � 256) � 0.98, ns. The most frequent
terminal transition was between probabilities and the adjacent
payoff: 67.4% for one-reason choices and 52.8% for three-reason
choices.

In summary, we observed a very consistent picture. Participants
showed interest in both probabilities and payoffs, mainly navigated
through the available information within one gamble, and strongly
favored transitions between outcomes and their corresponding
probabilities. These patterns occurred across one- and three-reason
choices and for the reading and choice phases. Consistent with the
PH, we did see differences in the attention devoted to one- versus
three-reason choices. However, these were not accompanied by an
equivalent change in transitions.

Process Data and Choice

As a final check, we attempted to predict the choices made by
respondents using the process tracing data. First, if we looked at
choices alone, then one might conclude that the PH provides good
predictions for choices, identifying the correct option more often
than prospect theory for both the two- and five-outcome choices.
This illustrates that predicting outcomes alone is not particularly
helpful in assessing and building better choice models.

To demonstrate this, we constructed a model for the two-
outcome choices, based on the number of transitions made by
respondents within each of the two gambles during the choice
phase. This statistical model is statistically significant and predicts
which gamble will be chosen: The more transitions within a
gamble, the more likely it is to be chosen. This suggests that the

Table 1
Priority Heuristic (PH) Predictions and Tests for Two-Outcome Gambles for Frequency, f, Duration, d, in Milliseconds, and the
Number of Transitions, t

Hypothesis (H) Means Test statistic Supports PH

H1a: Choice, one reason
Wa

min � Wb
min � Wa

max � Wb
max f: 0.70 � 0.68 f: t(3,682) � 0.34, ns No support

d: 441.85 � 450.68 d: t(3,682) � �0.21, ns
t(Wa

min, Wb
min) � t(Wa

max, Wb
max) t: 0.19 � 0.11 t: t(13,855) � 1.85, ns

H1b: Choice, three reasons
Wa

max � Wb
max � for 3- than for 1-reason choices f: 0.88 � 0.68 f: t(1,308) � 2.71** Mostly supported

d: 340.25 � 316.26 d: t(4,060) � 0.64, ns
Wa

min � Wb
min � for 3- than for 1-reason choices f: 0.78 � 0.70 f: t(1,308) � 1.13, ns

d: 378.72 � 272.13 d: t(4,060) � 2.87**

Pa
min � Pb

min � for 3- than for 1-reason choices f: 0.95 � 0.69 f: t(1,308) � 3.37**

d: 396.13 � 253.31 d: t(4,060) � 3.85**

t(Wa
min, Wb

min, Wa
max, Wb

max) � t(P a
min, Pb

min) � for 3-
than for 1-reason choices

t: 0.18 � 0.13 t: t(13,837) � 2.84**

H2: Probability-payoff
t(Pa

max, Wa
max) � t(Pa

min, Wa
min) � t(Pb

max, Wb
max) � t(Pb

min,
Wb

min) � all other transitions
t: 0.76 � 0.11 t: t(13,692) � �62.06** Significant in opposite direction

H3: Reading
(Wa

1 � Wa
2 � Wb

1 � Wb
2) � (Pa

1 � Pa
2 � Pb

1 � Pb
2) f: 1.20 � 0.87 f: t(3,682) � 8.81** Mixed, as predicted for

attention, but opposite
direction for transitions.

d: 805.22 � 553.47 d: t(3,682) � 9.78**

t(Wa
max, Wb

max) � t(Wa
min, Wb

min) � all other transitions t: 0.11 � 0.17 t: t(13,841) � �2.62**

** p � .01.
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underlying process driving choice is very different from that
proposed by the PH and that increased attention to a gamble, and
not certain outcomes, is associated with choice, a frequent result in
riskless choice (Payne, 1976). This result also shows that the
process data presented here are not epiphenomenal to choice, but
are related to outcomes.

Prior Research

Obviously, our results depended, to some extent, on the partic-
ular display, gambles, population, and other characteristics unique
to our experiment. However, we can examine prior research to see
how robust some characteristics of this research might be because
other researchers have used different displays, gambles, and infor-
mation acquisition technologies. Although most of this research
does not report as fine-grained analysis as the present article, one
measure is included in many articles: a statistic reporting the
relative frequency of transitions between two elements of a gam-
ble, relative to transitions within a gamble. This statistic is approx-
imately equivalent to a test of our Hypothesis 2. The PH would
predict fewer transitions between probabilities and payoffs (which
are consistent with the integration of these elements) than between
the two gambles’ payoffs and probabilities (which are consistent
with the comparison processes posited by the PH). We calculated
the ratio of these two types of transitions, as reported in several
studies, using very different methods (trackball, mouse and eye
tracking; Payne & Braunstein, 1978; Rosen & Rosenkoetter, 1976;
Russo & Dosher, 1983; Schkade & Johnson, 1989). Although the
PH would suggest that all of these indices should be less than 1, in

reality, they all exceed this number. Averaging across studies,
there are 70% more transitions within a probability and its payoff
than those contrasting the two gambles’ probabilities or payoffs.

By using a random coefficient model, we can examine individ-
ual differences in transitions across respondents, examining vari-
ations from the aggregate across our respondents. We focus on
Hypothesis 2, estimating a random effect that allows the number of
transitions to vary across people. This random effect was quite
significant, so we constructed an index for each participant in our
experiment. This index had a mean of 4.47, and none of the
individual-level means were significantly less than 1. Thus, all
respondents seemed most consistent with a strategy that uses
probabilities in the evaluation of payoffs, but to varying degrees.

Conclusion

Our observations raise an important question: What are people
doing when they make choices between gambles? It is beyond the
scope of the present article to provide an answer. However, our
results do suggest some stylized facts for future models:

The probability-payoff transition is common, and the com-
parisons of outcomes across gambles are rare. However, the
transition between a probability, say 0.3, and its payoff, say
$11, may not represent an explicit multiplication but some
other process that weights a payoff by its likelihood. Instead,
it may indicate how attention should be given to an outcome.

Table 2
Priority Heuristic Predictions and Tests for the Five-Outcome Gambles for Frequency, f, Duration, d, in milliseconds, and the
number of Transitions, t

Hypothesis (H) Means Test statistic Supports PH

H1a: Choice, one reason
Wa

min � Wb
min � Wa

max � Wb
max f: 0.187 � 0.133 t(13,626) � 1.87, ns Marginal support

d: 337.54 � 308.26 t(13,632) � 1.94, ns
t(Wa

min, Wb
min) � t(Wa

max, Wb
max) t: 0.07 � 0.03 t(196,164) � 1.90, ns

H1b: Choice, three reasons
Wa

max � Wb
max � for 3- than for 1-reason choices f: 0.17 � 0.13 t(13,627) � 1.42, ns Mostly not supported

d: 252.90 � 252.94 t(13,640) � �0.001, ns
Wa

min � Wb
min � for 3- than for 1-reason choices f: 0.187 � 0.184 t(13,627) � 0.11, ns

d: 261.44 � 310.51 t(13,640) � �1.65, ns
Pa

min � Pb
min � for 3- than for 1-reason choices f: 0.31 � 0.24 t(13,627) � 2.16*

d: 384.91 � 369.73 t(13,640) � 0.46, ns
t(Wa

min, Wb
min, Wa

max, Wb
max) � (Pa

min, Pb
min) � for

3- than for 1-reason choices
t: 0.023 � 0.017 t(132,038) � 1.13, ns

H2: Probability-payoff
t(Pa

max, Wa
max) � t(Pa

min, Wa
min) � t(Pb

max, Wb
max)

� t(Pb
min, Wb

min) � all other transitions
t: 0.27 � 0.02 t(254,536) � �156.2** Significant in the opposite direction

H3: Reading
(Wa

1 � Wa
2 � Wa

3 � Wa
4 � Wa

5 � Wb
1 �

Wb
2 � Wb

3 � Wb
4 � Wb

5) � (Pa
1 � Pa

2 �
Pa

3 � Pa
4 � Pa

5 � Pb
1 � Pb

2 � Pb
3 � Pb

4

� Pb
5)

f: 1.059 � 0.782 t(13,626) � 13.43** Supported

d: 664.83 � 620.21 t(13,632) � 9.24**

t(Wa
1, Wa

2, Wa
3, Wa

4, Wa
5, Wb

1, Wb
2, Wb

3, Wb
4,

Wb
5) � all other transitions

t: 0.06 � 0.03 t(230,421) � 29.31**

* p � .05. ** p � .01.
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Heuristics differ across individuals: Our analysis of the tran-
sition data reveals sizable differences in how people approach
these choice problems. Future models may abandon the idea
of a single underlying heuristic for choice.

Heuristics also seem to differ across gamble types. One of the
appealing features of the PH is that it proposes processes that
are contingent upon the kind of gamble. Although our results
are not particularly supportive of the PH in the way it com-
bines information, we do find support for the idea that atten-
tion differs across gamble types. This, of course, may also be
consistent with rank-dependent choice theories, including cu-
mulative prospect theory.

These facts suggest solutions to a remaining puzzle: How can a
model that seems to predict choices well fail to capture the pro-
cess? We suspect that the PH captures, in the aggregate, shifts in
choice processes that occur across both problems and individuals.
Confirmation of this speculation is left for further research.

Our hope in this comment has been to encourage the use of
process-oriented models and data in decision research. This rep-
resents a challenge because the data that arise from the analysis of
these relatively simple gambles provide a richer description of
cognition than simply modeling choice. At the same time, the clues
and constraints present in process data should allow the rapid
development of models that are more faithful to the processes
made to make decisions. We optimistically agree with Brandstätter
et al. (2006) that “process models of heuristics are key to opening
this black box.” (p. 427) and add that progress would be made
more quickly with the use of process data, both in the study of
choice (Payne et al., 1993) and inference.
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Appendix A

Experimental Method

A total of 77 participants (51 women, 26 men) were recruited
through the virtual lab at Columbia University and participated
online in the experiment. The mean age was 42.8 years (SD � 12.7
years). Participants were compensated with $ 5.

The gambles1 were presented with a recording tool called
MouseLabWEB (http://www.mouselabweb.org), which enables
the researcher to run experiments that collect process data with
high accuracy. In this methodology, a computer mouse is used
by the participant to uncover hidden information from a matrix.
As soon as the mouse is moved over an information cell, the
content is displayed; after moving the mouse out of the box, the
content is hidden again. Frequency and length of viewing are
recorded as well as the sequence of acquisition and the final
decision the participant makes after the information search.

The two option gambles (Brandstätter et al., 2006) were
presented in two basic setups in a between-subjects design. A
horizontal setup (see Figure 1) with one gamble (two options)
per row and a vertical setup with one gamble (two options) per
column was administered. These setups were used to minimize
effects that reading order, for example, could have on the search
process. Furthermore for each (win–probability) pair, the posi-
tion (left, right, top, bottom) was counterbalanced using a Latin
square with the restriction that corresponding options had to
remain connected (within a row or column). The five-option
gambles were only presented in a vertical setup with one
gamble (five options) per column. The horizontal layout is not
ideal to implement because the width of most computer screens
(even with high resolution) would have not been sufficient to
display all options at once.

After a detailed stepwise description of the components of a
gamble, a warm-up task followed to train participants to use
MouseLabWEB. Furthermore, it was ensured that participants
understood concepts like “What is the largest amount to win?”
or “What is the smallest probability?” through questions tar-
geted at these values.

Of course, the mapping between a hypothesized cognitive
process and information acquisition is not perfect. Although the
PH does not have an error theory, it is possible that information
search contains extraneous acquisitions. To minimize these
errors of commission, we eliminated all acquisitions of less than
100 ms as standard practice with this kind of data (Payne,
Bettman, & Johnson, 1988).

We performed a number of robustness checks to check the
sensitivity of our results to how we preprocessed the data,
divided the decision into two stages, etc. For preprocessing,
changing the threshold to 200 ms did not change our results.
Similarly, dividing each decision into two halves instead of
using a data-driven specification of reading versus choice
phases did not appreciably change the outcome of our analysis.
This division did have one advantage over the data-driven
analysis: Some participants in our analysis did acquire all of the
information and therefore did not have a choice phase when we
used the data-driven definition. Our visual analysis eliminates
those observations, but we have performed the statistical anal-
ysis both with those values set to zero (reported in the tables)
and set to missing, with no substantive change in results.

Appendix B

Model and Estimation

The analysis contained factors from the experimental design,
including a fixed between-respondent effect of orientation and
fixed within-respondent effects that generate the eight cells
seen in Figure 1: gamble (a or b), cell type (probability or
outcome), size (maximum or minimum), as well as a random
effect representing the effect of phase (reading or choice). Thus,
each choice had 16 observations, defined by the eight cells
and two phases. Using the notation of Raudenbush and Bryk
(2002), the model to be estimated for the attention measures is
specified as:

Level 1:

log�Yij	 � 
int j � 
phase j � phaseij � 
nreasons j � nreasonsij

� �
1

n


z � Xijz � rij, where rij � N�0,�2	.

Level 2:


 int j � �00 � u0j, where E
u0j� � 0 and Var
u0j� � �00.


phase j � �10 � u1j, where E
u1j� � 0 and Var
u1j� � �11.


nreasons j � �20 � u2j, where E
u2j� � 0 and Var
u1j� � �22.

In this model, Yij indicates the ith observation within subject j.
Xijz is the matrix of fixed effects as described above. The Level 1
model has three coefficients with random variation over partici-
pants, denoted by the random effect uxj. Specifically, we allow the
intercept 
int (participants differ in the mean number of acquisi-
tions/time), the phase coefficient 
phase (participants differ in how
they differ between phases within a decision), and the coefficient
for number of reasons 
nreasons (participants differ in how they
change strategies for more complex problems) to be random. The

1 In reading order, we used Gambles 1, 3, 7, 9, 12, 15, 17, and 19 from
Brandstätter et al.’s (2006) appendix for both two- and five-outcome choice
pairs.
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random effects are assumed to be normally distributed, with mean
vector 0 and variance terms �xy.

Because the dependent measures, time and frequency, are
skewed, they were log-transformed to make them more sym-
metrically distributed. We note that because of the discrete
nature of the frequency data, a linear regression might not be an
appropriate model. We therefore also estimated a nonlinear
Poisson regression model. However, because using a Poisson
specification yielded similar results to the ones obtained under
the linear model of the log-transformed data, we do not discuss
the results of this analysis in detail.

For transitions, we modeled the relevant transitions between
the eight boxes using a similar model, which has 56 observa-

tions per gamble per participant due to two factors: a transition
identifier (28 levels) and phase. Again, we used an intercept,
phase and number of reasons as random factors. In addition, as
described in the text, we estimated a model that allowed the
impact of kind of transition to vary across respondents, which
resulted in improved fit and substantively interesting inter-
pretations. We used two-tailed tests throughout, both because
this analysis has substantial power and because prior data
suggests results that conflict with the predictions of the priority
heuristic.
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Postscript: Rejoinder to Brandstätter, Gigerenzer, and
Hertwig (2008)

Eric J. Johnson
Columbia University

Michael Schulte-Mecklenbeck
University of Bergen

Martijn C. Willemsen
Eindhoven University of Technology

We appreciate that Brandstätter, Gigerenzer, and Hertwig
(2008) agree that process models are indeed useful for advanc-
ing researchers’ understanding of choice processes. Their state-
ment that choices represent adaptive process is also welcome
(see Payne, Bettman, & Johnson, 1993), as is the emphasis on
multiple measures. However, we do disagree on two empirical
matters:

Describing our research, Brandstätter et al. (2008) posit that
most tests are either null or supportive of the priority heuristic
(PH) and that only three of the tests were significant in the
opposite direction. This “scorekeeping heuristic” implies that
all tests are equally weighted in theory testing. However, we
believe that, one, the presence of mostly probability-payoff
transitions in the data is a critical test for any falsification of the
PH. Although Brandstätter et al. consider the existing evidence
on this point mixed, we do not. Table 1 contains the results from
a series of studies, almost all conducted before Brandstätter et
al. started their research and many of which are well-known in
the literature. As can be seen from Table 1, the majority of
observations show a predominance of probability-payoff tran-
sitions.

Brandstätter et al.’s (2008) effort to provide quantitative
predictions is laudatory. However, these predictions are very
sensitive to the assumptions that are made in the first, reading,
phase postulated by Brandstätter et al. They originally sug-
gested (Brandstätter, Gigerenzer, & Hertwig, 2006, p. 424) that
all choice heuristics have a reading phase in which one looks for
relevant information and a choice phase in which the relevant
information is used. This means that the choice phase is useful

for understanding heuristics, whereas the reading phase is
more epiphenomenal. The purpose of their original reading
phase was to find the larger payoffs. On the basis of adja-
cency (the idea that participants would inspect information
when it is needed), we argued that this would naturally lead
to comparisons between payoffs (see Figure 2 of Johnson,
Schulte-Mecklenbeck, & Willemsen, 2008). Brandstätter et
al. now assume that all the information is read first for Gamble
A, then for Gamble B, replacing the vertical arrows in our
Figure 2 in Johnson et al. (2008) with horizontal arrows. This
new position represents a quite testable hypothesis because it
suggests large changes in search patterns by phase and orien-
tation.

The bigger point is that Brandstätter et al. (2008), in their
new analysis, also ignore empirically their own distinction
between reading and choice phase. By stating that their reading
phase now consists mainly of probability-payoff transitions,
and then combining the two phases, they use those transitions to
compensate for their absence in the choice phase, making the
PH look artificially good, and remove one of its clearest pre-
dictions.

In essence, we agree with the goals of the approach taken by
Brandstätter et al. (2008) but argue that if process-tracing data is to
inform the development of choice models, then it is important to
listen what the data are saying.

Table 1
Ratio of Transitions Types: Between Probabilities and Payoffs/
Within Probabilities and Payoffs, Prior Studies Using Gambles
Compatible With the Priority Heuristic

Study
Condition/
experiment Method Ratio

Brandstätter et al. (2008) Mouselab 2.34
Johnson et al. (2008) 2 outcome Mouselab 2.13

5 outcome 0.56
Payne & Braunstein (1978) 2 outcome Trackball 1.94
Rosen & Rosenkoetter (1978) Eye tracking 1.63
Russo & Dosher (1983) Experiment 3 Eye tracking 2.20a

a Weighted by number of fixations.
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