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Abstract

The study of cognitive processes is built on a close mapping between three

components: overt gaze behavior, overt choice, and covert processes. To validate this

overt–covert mapping in the domain of decision‐making, we collected eye‐movement

data during decisions between risky gamble problems. Applying a forward inference

paradigm, participants were instructed to use specific decision strategies to solve

those gamble problems (maximizing expected values or applying different choice

heuristics) during which gaze behavior was recorded. We revealed differences

between overt behavior, as indicated by eye movements, and covert decision

processes, instructed by the experimenter. However, our results show that the

overt–covert mapping is for some eye‐movement measures not as close as expected

by current decision theory, and hence question reverse inference as being prone to

fallacies due to a violation of its prerequisite, that is, a close overt–covert mapping.

We propose a framework to rehabilitate reverse inference.
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1 | INTRODUCTION

The field of judgment and decision‐making (JDM) is subjected to an

ongoing paradigmatic shift as it evolves its focus, methods, and

approaches from an outcome‐based/economic perspective toward a

more process‐orientated/psychological paradigm (Oppenheimer &

Kelso, 2015; Schulte‐Mecklenbeck et al., 2017). This process paradigm

explains decision‐making through perceptual, attentional, memory,

and aggregation processes. Thus, process models of decision‐making

have become increasingly important as it is now of superordinate

interest how environmental information is translated into choices,

that is, the field of JDM has shifted its focus from what people

choose to how they decide (Johnson & Ratcliff, 2014). However,

the investigation of those processes requires methodologies that

allow for correct inferences of covert cognitive processes based
wileyonlinelibrary.com/jo
on observable behavior. The evaluation and expansion of such a

methodology is the objective of this article.

A prerequisite for any methodology to investigate cognitive

processes is a close relationship between overt observable behavior

and the underlying covert cognitive processes. The measurement of

eye movements is one approach that relies on that specific

assumption in order to provide insights into the processes underly-

ing a wide variety of human behaviors such as walking, driving,

reading, and decision‐making (Glaholt & Reingold, 2011; Hayhoe &

Ballard, 2005; Orquin & Mueller Loose, 2013; Rayner, 2009). Follow-

ing Poldrack (2006), the reasoning in eye‐tracking studies then works

as follows:

1. When a task recruits some psychological process P, eye‐

movement pattern EM is likely to be found;
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2. in the present study, a pattern EM was found when task T was

presented; it can therefore be concluded that

3. the psychological process P was recruited by task T.

This reasoning is deductively invalid because a variety of cognitive

processes can be responsible for the same observable patterns of, for

instance, blood oxygenation level‐dependent signals or even eye

movements and was denominated as the fallacy of reverse inference

(Glymour & Hanson, 2016; Poldrack, 2006). In defense of reverse

inference, Machery (2014) has argued that this fallacy can be over-

come by the comparison of competing hypotheses and hence compar-

ative conclusions. Indeed, this kind of model comparison is typical for

eye‐tracking studies of decision‐making (e.g., Fiedler & Glöckner,

2012) seemingly excluding those from being subject of the reverse

inference critics.

However, even the comparative conclusions drawn from model

comparisons are vulnerable as they still rely on the first premise of

the aforementioned reverse‐inference reasoning. Accordingly, we

assume a somewhat high probability that a cognitive process produces

a specific eye‐movement pattern—the mapping between covert cogni-

tive processing and overt observable behavior. In fact, we do not have

sufficient reasons for this assumption. Thus, the same cognitive pro-

cess might produce a variety of eye‐movement patterns that we

would in turn—employing a reverse inference—wrongly credit to a

variety of cognitive processes. Even if we test competing hypothe-

ses—as argued by Machery (2014)—this variety of eye‐movement pat-

terns may still lead us to favor the wrong model. In Marr's (1982)

terminology (cf. Anderson, 1990; Pylyshyn, 1984), we, hence, describe

covert decision processes (e.g., heuristics) at the computational level

where problems are specified generically. In contrast, we measure

overt behaviors (e.g., eye movements) at the algorithmic level showing

how exactly the computational problems are solved. Thus, the same

decision process can be realized in a variety of overt behaviors, and

hence, the mapping between covert cognitive processing and observ-

able behavior is prone to great variability.

To deal with the reverse‐inference problem, one prominent solu-

tion are multimethod approaches (e.g., Forstmann, Wagenmakers,

Eichele, Brown, & Serences, 2011; Turner, Forstmann, Love, Palmeri,

& Van Maanen, 2017; Turner, Rodriguez, Norcia, McClure, & Steyvers,

2016), using multiple paths to connect descriptions (i.e., models) and

observations (i.e., data) on different levels (cf. Marr, 1982). Another,

to‐date less prominent solution, forward inference has been intro-

duced by Henson (2006). Forward inference turns the direction of

inference upside down by making cognitive processes explicit through

instruction (Heit, 2015; Henson, 2006). By this means, the mapping

between observable behavior and the cognitive process, as instructed

by the experimenter, can be evaluated.

Schulte‐Mecklenbeck, Kühberger, Gagl, and Hutzler (2017)

recently applied a paradigm in risky choice that allows for such a for-

ward inference. They evaluated the mapping between eye move-

ments and different process predictions derived from distinct

decision models. The derivation of process predictions was justified

by the information processing perspective on decision‐making, which
argues that a model can be broken down into a sequence of succes-

sive cognitive operations, or elementary information processes (EIPs)

such as read, compare, difference, add, product, eliminate, move, and

choose (Bettman, Johnson, & Payne, 1990; Payne, Bettman, & John-

son, 1988, 1993). With the exception of read and choose, different

decision models use different EIPs and/or different distributions of

the respective EIPs; for example, calculating an expected value (EV)

would use product whereas using the priority heuristic (PH, see

below) would use compare (among other EIPs)—these differences

should result in different eye‐movement patterns. In the Schulte‐

Mecklenbeck, Kühberger, et al. (2017) paradigm, participants first

learned these decision strategies (EV and PH) and were then

instructed to apply them on the same set of risky gambles. These

decision strategies differ strongly with respect to the predictions

on information acquisition and processing that should be captured

by the measurement of eye movements. Schulte‐Mecklenbeck,

Kühberger, et al. (2017) found misfits between the two models' pre-

dictions and participants' gaze behavior and concluded that overt

behavior, indicated by eye movements, is to some extent ambiguous

with respect to covert, underlying cognitive (decision) processes.

They concluded that at least some studies of decision‐making in that

eye‐movement patterns were interpreted within some (narrow) the-

oretical account committed the fallacy of the reverse inference

(Brandstätter & Körner, 2014; Fiedler & Glöckner, 2012; Glöckner

& Herbold, 2011; Pachur, Hertwig, Gigerenzer, & Brandstätter,

2013; Su et al., 2013; Zhou et al., 2016).

Before one reaches the conclusion that a long line of previous

research has committed the fallacy of the reverse inference, one

should carefully examine the inevitability of the conclusion drawn by

Schulte‐Mecklenbeck, Kühberger, et al. (2017). Its validity could be

limited, for example, due to methodological issues; while a forward

inference paradigm is an elegant way to evaluate the mapping

between overt and covert processes, it should comply with (at least)

three methodological features that Schulte‐Mecklenbeck, Kühberger,

et al. (2017) did not implement. Those features are related to (a) the

set of used gamble problems, (b) the manipulation check, and (c) the

incentives. First, the set of gamble problems should be tailored in a

way that the correct application of each instructed decision strategy

leads to a distinct choice. This feature eventually enables participants

to apply those strategies and hence to make correct choices according

to the respective decision strategy. However, making correct choices

cannot be the only criterion to ascertain that participants effectively

applied the instructed strategies, as it is not possible to tailor sets of

risky gamble problems that allow an outcome‐based strategy classifi-

cation for more than two decision strategies (Bröder, 2010). Second,

it is beneficial to conduct a strategy check, that is, testing whether par-

ticipants effectively applied the strategy they were instructed. Third, a

forward inference approach should have different incentives as partic-

ipants shall not maximize their payoff by choosing between gamble

problems they would like to be played out, but rather by solving gam-

ble problems according to the instructed strategies. Hence, partici-

pants should be incentivized for making correct choices in the light

of the respective strategy.



TABLE 1 Decision rules of three decision strategies instructed in the
current forward inference paradigm; taken from Brandstätter et al.
(2006) and Payne et al. (1993)

Strategy Decision rule

The priority

heuristic

Go through reasons in the following order: minimum

outcome, probability of minimum outcome, and

maximum outcome. Stop examination if the

minimum outcomes differ by 1/10 (or more) of the

maximum outcome; otherwise, stop examination if

probabilities differ by 1/10 (or more) of the

probabilities scale. Choose the gamble with the

more attractive outcome (probability).

Expected value

theory

Calculate the sum of all weighted possible outcomes

within each option of the gamble problem using the

formula ∑Pi * Oi, where Pi and Oi are the probability

and outcome of the probability–outcome pair i.

Choose the option with the highest weighted sum.

The minimax

heuristic

Choose the option with the highest minimum

outcome.

1Even though those participants solved the warm‐up gambles (see Procedure) correctly, they

showed high error rates that had already been noticed by the experimenter during the exper-

iment (see error protocol available online). The corresponding occurrence of those two indica-

tors led to the exclusion eventually.
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In this study, we propose a forward inference paradigm that

addresses the above outlined shortcomings. Thereby, we scrutinize

previous findings from Schulte‐Mecklenbeck, Kühberger, et al. (2017)

and reassess their conclusion that (at least some) previous studies of

decision‐making, in which eye‐movement patterns were interpreted

within some (narrow) theoretical account, committed the fallacy of

the reverse inference due to a violation of its prerequisite.

We applied a risky choice paradigm with three instructed decision

strategies—the PH (Brandstätter, Gigerenzer, & Hertwig, 2006), EV

(Hacking, 1984), and the minimax heuristic (MM; Coombs, Dawes, &

Tversky, 1970, p. 141). Detailed descriptions of these strategies can

be found in Table 1. We instructed participants to apply these strate-

gies on the same set of gamble problems. All gamble problems could

be solved applying either strategy. Each of the strategies (PH, EV,

and MM) make fundamentally different process predictions—hence

they offer themselves as ideal test objects for our question. Whether

these strategies reflect actual choice behavior is of lesser interest for

this article. After each choice in a gamble problem, we implemented

a strategy check, that is, participants had to indicate properties of

the previous gamble problem of which they should only be aware if

they applied the demanded strategy. Participants were rewarded if

they chose according to the strategy and answered correctly in the

strategy check. Hence, the different set of gamble problems, the strat-

egy check and the reward for both, correct choice and successful

strategy check were the major improvements of our forward inference

paradigm in comparison with Schulte‐Mecklenbeck, Kühberger, et al.

(2017). Additionally, we applied a within‐subjects experimental design

rather than a between‐subjects design that has been used in Schulte‐

Mecklenbeck, Kühberger, et al. (2017) for the comparison between

the EV and PH condition. We also added the less complex MM condi-

tion in order to introduce variance in strategy complexity. On the level

of stimulus presentation, we also switched from an equidistant 2 × 4

matrix format to an equidistant ellipsoid format (see Section 2.4).

We expected that these improvements would maximize the
probability that participants applied the instructed strategies, which

in turn would enhance a valid evaluation of the mapping between

overt and covert processes.
2 | METHOD

2.1 | Ethics statement

The study was performed in accordance with the guidelines of the

Declaration of Helsinki and of the German Psychological Society. An

ethical approval was not required because the study did not involve

any risk or discomfort for the participants. All participants were

informed about the purpose and the procedure of the study and gave

written informed consent prior to the experiment. All data were

analyzed anonymously.
2.2 | Participants

Forty participants (45.16% female, mean age = 23.19, SD = 2.95)

completed the experiment conducted at the Technische Universität

Dresden, Germany. The experiment lasted 75 minutes. Participants

were uniformly recruited through the department's data‐base system,

which is based on ORSEE (Greiner, 2004). Participants received either

class credit or €5.00 show‐up fee as well as up to €5.04 bonus

depending on individual performance. All participants had normal or

corrected‐to‐normal vision. Nine participants were excluded from

subsequent analyses due to major technical issues concerning the

eye‐tracking procedure such as finding the corneal reflection point

and hence run a proper calibration (Participants 1, 2, 15, 26, and 28),

participants' problems applying the instructed strategies (14, 16,

18),1 and data loss (34). If we included the participants with

problems of applying the instructed strategies, the results did not

show qualitative differences.
2.3 | Apparatus

Eye‐movements were recorded with an EyeLink 1000 desk‐mounted

eye tracker (SR Research, Ontario, Canada), which has a reported

average accuracy between 0.25° and 0.50° of visual angle and root mean

square (RMS) resolution of 0.01° (www.sr‐research.com). Participants'

right eyemovements were tracked using the combined pupil and corneal

reflection setting at a sampling rate of 250 Hz. A chin rest was used to

minimize head movements and to hold the distance between the eye

and the monitor (BenQ E910 LCD) at 82 cm. The screen had a diagonal

of 19 inches and a resolution of 1,280 × 1,024 pixels; the refresh rate

was 60Hz. Stimuli were presented in Courier New font (30 point = 1 cm);

a single letter corresponded to about 0.70° of visual angle. Preceding

each of the three experimental blocks, we ran nine‐point grid calibration

http://www.sr-research.com


FIGURE 1 Within trial procedure in the experiment (top panel) and example of the strategy check for each strategy: priority heuristic (PH),
expected value, and minimax heuristic (bottom panel from left to right). Note: the presentation time of the fixation cross was randomized with
values drawn from a uniform distribution in the range from 1,500 to 2,000 ms. Choices of both during the gamble and the strategy check were
indicated by pressing the adequate direction from the arrow keys on the keyboard.
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(using a grid of three horizontal positions × three vertical positions)

and drift correction as well as validation of both settings and potential

re‐calibration; we obtained an average accuracy of 0.33° (SD = 0.10°)

of visual angle.
2All items were randomly computed online; we provide the Matlab script for this

calculation online.
2.4 | Material

In each risky gamble problem, participants had a choice between two

options (A and B). Each option consisted of two outcome‐probability

(O‐P) pairs. All outcomes (O) and probabilities (P) were presented in

an ellipsoid display format (see Figure 1, top panel) in which all pieces

of information (i.e., outcomes and probabilities) are present at equal

distance from an initial fixation point (Fiedler & Glöckner, 2012;

Glöckner & Herbold, 2011). We constructed a set of 21 gamble prob-

lems (see Appendix A). The mean EV for Option A was €8.95

(SD = €3.4). The mean EV for Option B was €8.40 (SD = €3.6). The

mean absolute differences in EVs between the options was €1.82

(SD = €0.98). Each gamble could be solved unambiguously using either

strategy. Within these 21 gamble problems, we created three subsets

of seven gamble problems in which the PH terminated after the first,

second, and third step, respectively (one‐, two‐, or three‐reason gam-

ble problems, see Brandstätter & Körner, 2014). In one‐reason gamble

problems, the decision should be based on the comparison of mini-

mum outcomes only. The minimum outcomes are given by the

smallest outcome in either option. In two‐reason gamble problems,

the decision should be based on the comparison of minimum probabil-

ities because throughout the previous comparison of the minimum

outcomes, none of the options was clearly dominant. The minimum

probabilities are given by the respective adjacent probabilities to the
minimum outcomes. In three‐reason gamble problems, the former

logic extends to the comparison of the maximum outcomes. The max-

imum outcomes are given by the highest outcome in either option.

After each risky gamble problem, participants had to indicate

whether they had applied the correct strategy—the strategy check

(see Figure 1, bottom panel). In the PH condition, we asked after

which step the PH was terminated. In the EV condition, participants

were confronted with three pairs of EVs, and they had to indicate

which of those pairs describes the preceding gamble. In the MM con-

dition, participants were confronted with three outcomes, and they

had to indicated which of those outcomes was the outcome they were

instructed to base their decision on.2

We provided feedback after each strategy check indicating

whether participants made the correct choice as well as answered

the strategy check correctly. Therefore, we used a 2‐s increasing tone

sequence for positive feedback, and a 1‐s decreasing tone sequence

for negative feedback (available online).
2.5 | Procedure

Participants were first given information about the eye‐tracking

setup and a general description of the gamble problems. Then, all

participants worked through three experimental blocks with the order

of the blocks being counterbalanced between participants. Each block

started with a detailed instruction of the respective strategy,

consisting of an explanation of each step necessary to follow the
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strategy as well as a working example (available online). After the

instruction, participants and instructors worked through three warm‐

up gambles to ensure strategy comprehension. To that end, during

the three warm‐up gamble problems, participants were urged to ver-

balize their cognition and instructors were free to correct participants

or answer any questions concerning the respective strategy. After the

warm‐up gambles, the eye‐tracking system was calibrated. Partici-

pants were then presented with the 21 risky gamble problems in

within‐block randomized order and asked to choose the correct gam-

ble option (A, B) given the instructed strategy. Each risky gamble prob-

lem was presented three times, and hence, participants solved 63

gamble problems throughout the experiment. Due to the requirements

of a planned scanpath analysis, gambles were presented in a fixed

setup in each of the three respective occurrences across all partici-

pants, that is, all participants were presented with the same stimuli

three times. The results of the scanpath analysis will be reported

elsewhere.

After each of the 21 gamble problems, the strategy check was

applied (see Section 2.4). When participants correctly chose and

succeeded in the strategy check, they earned a bonus of €0.08, indi-

cated by a specific sound (see Section 2.4). Given a wrong response

(choice or strategy), no bonus was awarded, indicated by a different

sound. Participants could earn a bonus of up to €5.04 (3 * 21 gambles

* €0.08). At the end of each block, participants were informed about

the bonus they had earned so far.
2.6 | Data preparation and processing

Eye‐movement data were analyzed with a customized Matlab script

(available online). Saccade and fixation events were defined on‐line

by the host3 of the eye‐tracking system and read out by the script if

a fixation landed on one of the pre‐defined, non‐overlapping areas

of interest (AOIs). Eight AOIs with a size of 150 × 80 pixels were

defined with a visual angle of 3.70° × 1.96° and the numeric values

in the center. The minimal horizontal distance between the AIOs of

the outcomes of the two gambles (e.g., 80% and 70%, or 20% and

30%, see Figure 1) was 150 pixels (3.70°); the minimal vertical distance

between the outcomes as well as outcomes and probabilities within

gambles (e.g., 9 and 20, or 80% and 9, see Figure 1) was 120 pixels

(2.96°), respectively. Fixation durations shorter than 50 ms were

removed from the analysis. Consecutive fixations on the same AOI

were concatenated and hence denominated as dwells.

On a trial level, all data were included regardless of whether the

wrong option was chosen or the strategy check was answered incor-

rectly. We did so, because participants might have applied the

instructed strategies erroneously; instead, we excluded participants
3The EyeLink software applies a velocity‐based algorithm combined with acceleration criteria

to detect saccade onsets and offsets. We used a cognitive configuration combining velocity,

acceleration, motion and pursuit thresholds of 30°/s, 8,000°/s2, 0.15°, and 60°, respectively.

The motion threshold is used to ensure that the eye has moved sufficiently before a saccade

is detected. The pursuit threshold is used to limit the amount that the velocity threshold can

be raised by the average velocity over the last 40 ms in order to detect long and smooth eye

movements. Hence, the cognitive configuration is conservative, less sensitive to noise and

ignores most saccades smaller than 0.6°.
with high error rates proposing that those participants have not been

able to apply the instructed strategies (see Section 2.2).

Data preprocessing and aggregation was performed in Matlab

2015a (the Mathworks Inc.). Statistical analyses were performed in

Matlab, and R (R Core Team, 2018). In order to ease comparison of

results between the current and the Schulte‐Mecklenbeck, Kühberger,

et al. (2017) study, we applied the same statistical analyses using the

same set of R packages. Additionally, we reanalyzed the Schulte‐

Mecklenbeck data using only gambles that involved gains and report

these results were appropriate in footnotes.

2.7 | Predictions

Our analysis will focus on participants' choices as a precondition for

the successful application of the instructed strategy and on the follow-

ing process measures: (a) dwell patterns, (b) dwell frequencies, and (c)

dwell times. For each of these dependent measures, we will derive a

separate set of predictions. Table 2 provides a detailed set of predic-

tions (and results) for dwell frequencies (also specifying expected dif-

ferences for one‐, two‐, and three‐reason gamble problems).

2.7.1 | Choices

In the MM condition, participants were instructed to base their deci-

sion on the mere comparison of the options' minimum outcome (Omin).

In the PH and EV conditions, participants were supposed to execute

both comparisons and calculations. PH demands more comparison

and less calculation, whereas EV demands less comparison and more

calculation. Speaking in terms of EIPs, all strategies demand read and

choose, but EV and PH additionally demand both compare and prod-

uct, whereas MM merely demands compare. Hence, MM can be

interpreted as less complex (or difficult to apply) than PH and EV,

and therefore we expect participants' choices to be most consistent

with the strategy they were instructed to use in the MM condition.

Because product (as necessary for EV) is more prone to errors than

compare (mainly applied in PH) as well as based on recent results

(see Schulte‐Mecklenbeck, Kühberger, et al., 2017), we expect choice

consistency in PH condition being higher than in EV.

2.7.2 | Dwell patterns

In the EV condition, we instructed participants to base their decision

on the calculation and comparison of EVs, for example, to multiply

outcome (O) and probability (P). Hence, we expect frequent within‐

option transitions O → P or P → O. In the PH condition, we instructed

participants to base their decisions mostly on pairwise comparisons,

for example, to compare minimum outcomes. Hence, we expect fre-

quent O → O or P → P transitions between options, depending on

the necessary number of comparisons (one‐, two‐, or three‐reason

gambles). In the MM condition, we instructed participants to base

their decisions on the mere comparison of minimum outcomes. Hence,

we expect frequent O → O transitions between options (comparable

with one‐reason gambles in PH, see Section 2.4).



TABLE 2 Comparisons between outcomes and probabilities with predictions of dwell frequencies separately for EV, PH, and MM

Predictions Empirical data

Comparison EV PH MM EV PH MM

O vs. P Or = 1 = Pr = 1 Or = 1 > Pr = 1 Or = 1 > Pr = 1 56.6 > 43.4 86.7 > 13.3 98.5 > 1.5

Or = 3 = Pr = 3 Or = 3 > Pr = 3 Or = 3 > Pr = 3 55.6 > 44.4 69.7 > 30.3 98.0 > 2.0

Omax vs. Omin
Omax

r¼1 ¼ Omin
r¼1 Omax

r¼1 < Omin
r¼1 Omax

r¼1 < Omin
r¼1

28.3 = 28.3 43.1 = 43.6 48.1 < 50.4

Omax
r¼2 ¼ Omin

r¼2 Omax
r¼2 < Omin

r¼2 Omax
r¼2 < Omin

r¼2
27.0 = 29.1 33.2 = 31.7 47.8 = 49.7

Pmax vs. Pmin
Pmax
r¼2 ¼ Pmin

r¼2 Pmax
r¼2 < Pmin

r¼2 Pmax
r¼2 ¼ Pmin

r¼2
21.3 = 22.6 17.7 = 17.4 1.3 = 1.1

Pmax
r¼3 ¼ Pmin

r¼3 Pmax
r¼3 < Pmin

r¼3 Pmax
r¼3 ¼ Pmin

r¼3
22.3 = 22.1 15.7 = 14.6 0.9 = 1.1

Omax
r¼1 ; O

max
r¼2 vs:Omax

r¼3 Omax
r¼1 ¼ Omax

r¼3 Omax
r¼1 < Omax

r¼3 Omax
r¼1 ¼ Omax

r¼3 28.3 = 27.7 43.1 = 36.7 48.1 = 48.7

Omax
r¼2 ¼ Omax

r¼3 Omax
r¼2 < Omax

r¼3 Omax
r¼2 ¼ Omax

r¼3 27.0 = 27.7 33.2 < 36.7 47.8 = 48.7

Pmin
r¼1 vs:Pmin

r¼2; P
min
r¼3 Pmin

r¼1 ¼ Pmin
r¼2 Pmin

r¼1 < Pmin
r¼2 Pmin

r¼1 ¼ Pmin
r¼2

21.9 = 22.6 6.9 < 17.4 1.0 = 1.1

Pmin
r¼1 ¼ Pmin

r¼3 Pmin
r¼1 < Pmin

r¼3 Pmin
r¼1 ¼ Pmin

r¼3
21.9 = 22.1 6.9 < 14.6 1.0 = 1.1

Note. Empirical findings are shown as percentages of dwells per gamble problem (e.g., O vs. P). All differences are significant on a Bonferoni corrected alpha‐
level (p < .005) as given by a paired sample t test; when models predicted no difference, test was conducted two‐tailed; when models predicted difference,

test was conducted one‐tailed in the predicted direction of the difference.

Abbreviations: EV, expected value; MM, minimax heuristic; O, outcomes; P, probabilities; PH, priority heuristic.
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2.7.3 | Dwell frequencies

In the EV condition, we expect no difference in the number of dwells

on O and P. In the PH condition, the number of dwells O and P is

dependent on the number of reasons. In one‐reason gambles, choice

is based on outcomes only (maximum outcomes to calculate aspiration

level and comparing minimum outcomes). In two‐reason gamble prob-

lems, both probabilities of the minimum outcomes must be considered

additionally. In three‐reason gamble problems, a reconsideration of the

maximum outcomes can be expected. Thus, in the PH condition, we

expect more dwells Os than Ps, with the ratio depending on the num-

ber of reasons. In the MM condition, we expect more dwells Os than

Ps. Based on recent research, we speculated that the dwell frequency

is lowest in MM and does not differ in PH and EV (see Schulte‐

Mecklenbeck, Kühberger, et al., 2017).
4Descriptive results were supported statistically by generalized multilevel regression analysis

at the trial level using a binomial link function and including participants as random intercept

and condition (EV, PH, and MM) as a fixed effect (see complete analyses script online).
2.7.4 | Dwell times

The dwell time—that is, the duration between two saccades in that the

eye rests on a specific area of interest—is taken to be indicative of

attention (Rayner, 2009). However, it may also indicate consumption

of cognitive resources. For instance, if it is more effortful to multiply

an outcome by a probability (as necessary for EV) than to compare

the size of two outcomes (as necessary for MM and mainly applied

in PH), the average dwell time should be longer for product than for

compare. Previous research suggests that dwell time is associated with

the complexity of the process executed (Velichkovsky, 1999). Hence,

EV, which involves both product and sum, can be expected to result

in longer dwells than PH and MM, which require only compare,

despites the calculation of the aspiration level (product) in PH. There-

fore, we expect longer dwells in PH than MM.
2.8 | Data statement

All primary data and analysis scripts as well as some materials are

available and can be accessed at https://osf.io/q3ybt/.
3 | RESULTS

3.1 | Choices

First, we evaluated whether participants' choices were consistent

with the strategy they were instructed to use: EV, PH, or MM. All

strategies discriminated between gamble options in all gamble prob-

lems (see Appendix) and, hence, predicted choices distinctly. Partici-

pants' choice behavior showed that strategy instructions were

effective in guiding participants to the predicted choices. Participants

instructed to use EV chose the option with the higher EV in 88% of

the gamble problems; participants instructed to use the PH‐made

corresponding choices in 88% of the gamble problems; participants

instructed to use MM chose the option with the higher minimum

outcome in 98% of the gamble problems. When taking into account

whether the strategy check was also answered correctly, results

showed a similar pattern (EV – 81%, PH – 82%, and MM – 97%)

with lower overall accuracy.4

We also inspected participants' choice behavior separately for

one‐, two‐, and three‐reason gambles: in one‐reason gamble problems,

participants chose the option with the highest minimum outcome in

95%; in two‐reason gamble problems, participants chose the option

with highest probability of the minimum outcomes in 81%; in three‐

https://osf.io/q3ybt/


FIGURE 2 Average dwell pattern as indicated by the search metric
depicted as a box plot for each of the three strategies, with

superimposed averaged raw data for each participant (jittered) and a
probability density function. [Colour figure can be viewed at
wileyonlinelibrary.com]

6Schulte‐Mecklenbeck data: one‐reason–three‐reason gambles, b = 0.18, CI95% = (−1.21 to
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reason gamble problems, participants chose the option with highest

maximum outcomes in 88%. Taking correct strategy checks into

account, a similar pattern emerged (one‐reason PH – 90%, two‐reason

PH – 74%, and three‐reason – 81%).

Therefore, we successfully instructed participants to use a specific

decision strategy during risky choice and outperformed instruction of

strategy used by Schulte‐Mecklenbeck, Kühberger, et al. (2017) who

reported 62% and 80% choices being consistent with EV and PH,

respectively. However, due to our additional strategy check, we can

assume that participants' actually applied the instructed strategies,

which justifies to evaluate top‐down effects on different process mea-

sures such as dwell pattern, dwell frequency, and dwell time.

3.2 | Dwell patterns

In order to evaluate the overall pattern of information acquisition as

indicated by dwell pattern, we determined the ratio of within‐ to

between‐option transitions by applying Böckenholt's Search Metric

(SM) calculation (Böckenholt & Hynan, 1994) as follows:

SM ¼

ffiffiffiffi
N

p
*

OA
N

� �
nopt − nattð Þ − A −Oð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 A − 1ð Þ þ A2 O − 1ð Þ

q ;

where O indicates the number of gamble options (two in our experi-

ment), A indicates the number of attributes (four in our experiment),

N indicates the total number of transitions, nopt indicates the number

of option‐wise transitions, and natt indicates the number of attribute‐

wise transitions. By those variables, the SM incorporates the specific

stimulus setup of the gamble problem. The SM distinguishes within‐

option transitions (i.e., successive transitions of information within

the same gamble option but between attribute dimensions, nopt) from

between‐option transitions (i.e., successive transitions of information

within the same attribute dimension but between gamble options,

natt). We replaced the absolute occurrences of transitions (N, nopt, natt)

with their proportions to capture the index's sensitivity to large Ns

(see Pachur et al., 2013). An SM <0 indicates a predominance of

between‐option transitions, and an SM >0 indicates a predominance

of within‐option transitions.

The evaluation of participants' overall dwell patterns showed the

predicted pattern (see Figure 2). Participants' application of EV led

on average to the highest, positive index, SMEV = 6.10 (SD = 1.66),

indicating a predominance of within‐option transitions; the application

of PH and MM resulted on average in a negative index, SMPH = −9.19

(1.77), SMMM = −11.93 (2.51), indicating a predominance of between‐

option transitions.

Descriptive results were supported statistically by multilevel

regression analysis with participants and gamble problem as random

intercepts and condition (EV, PH, and MM) as a fixed effect. The SM

indeed was higher in EV than in both PH, b = 15.29, CI95% = (14.98

to −15.60),5 and MM, b = 18.02, CI95% = (17.71–18.33); the difference
5Schulte‐Mecklenbeck data: EV‐PH, b = 8.47, CI95% = (7.94–9.00).
between PH and MM was much smaller, b = 2.73, CI95% = (2.42–3.04).

Additionally, a similar multilevel regression analysis on a PH‐only sub-

set with participants and gamble problem as random intercepts and

reasons (one reason, two reasons, and three reasons) as a fixed effect

revealed that the SM was similar between one‐reason and three‐

reason gambles, b = −0.39, CI95% = (−0.81 to 0.04), but differed

between one‐reason and two‐reason gambles, b = −1.57, CI95% = )

−2.00 to −1.14) as well as two‐reason and three reason gambles,

b = 1.18, CI95% = (0.76–1.61), respectively.6

In sum, as predicted, we found that participants' dwell patterns dif-

fered between all strategies and thus confirmed the finding of Schulte‐

Mecklenbeck, Kühberger, et al. (2017) concerning dwell patterns pro-

duced by PH and EV.
3.3 | Dwell frequencies

In order to analyze dwell frequencies, we first examined the three

strategies on an aggregate level and then turned to a more fine‐

grained analysis of information acquisition and processing behavior.

The average number of dwells was highest when participants

applied EV, FixEV = 66.78 (SD = 24.28), indicating that a comparably

large number of dwells was needed to follow this strategy (see

Figure 3). Participants required less dwells when following PH and

MM, FixPH = 31.01 (11.31), FixMM = 8.67 (2.30), respectively.

Descriptive results were supported statistically by multilevel

regression analysis with participants and gamble problem as random

intercepts and condition (EV, PH, and MM) as a fixed effect. The aver-

age number of dwells index indeed was higher in EV than in both PH,
1.56); one‐reason–two‐reason gambles, b = 0.66, CI95% = (−0.73 to 2.04); three‐reason–

two‐reason gambles, b = 0.48, CI95% = (−0.90 to 1.87).

http://wileyonlinelibrary.com


FIGURE 4 Average dwell time (in milliseconds) depicted as a box
plot for each of the three strategies, with superimposed averaged

raw data for each participant (jittered) and a probability density
function. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Average dwell frequency as depicted as a box plot for
each of the three strategies, with superimposed averaged raw data

for each participant (jittered) and a probability density function.
[Colour figure can be viewed at wileyonlinelibrary.com]
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b = 35.77, CI95% = (33.30–38.23),7 and MM, b = 58.23, CI95% = (55.65–

60.58); the average number of dwells was also higher in PH than MM,

b = 22.35, CI95% = (19.88–24.81).8

A more fine‐grained analysis of dwell frequencies focused on spe-

cific predictions on the relative number of dwells on outcomes and

probabilities separately (see Johnson, Schulte‐Mecklenbeck, &

Willemsen, 2008; Pachur et al., 2013; Schulte‐Mecklenbeck,

Kühberger, et al., 2017). This analysis does not only discriminate

between outcomes and probabilities, but also takes the relative size

of those properties into account by distinguishing between the mini-

mum outcome, the probability of the minimum outcome, the maxi-

mum outcome, and the probability of the maximum outcome.

Table 2 presents the 10 predictions derived for the three instructed

strategies as well as the corresponding empirical findings from our

experiment. The first line, for example, shows predictions for out-

comes and probabilities (O vs. P). For one‐reason gambles (r = 1), EV

predicts equal numbers of dwells on outcomes and probabilities, as

indicated by Or = 1 = Pr = 1. In contrast, PH and MM predict more

dwells on outcomes than on probabilities, as indicated by Or = 1 > Pr = 1.

Concerning the empirical findings, we report the percentages of dwell

on outcomes and probabilities separately for the three strategies.

The 10 predictions in Table 2 sketch a distinct pattern for each

instructed strategy: (a) EV always predicts an equal distribution of

dwell frequencies, irrespective of the properties of information or

the number of reasons. (b) PH predicts more dwells on outcomes than

probabilities and fewer dwells on the maximum outcome than the

minimum one. (c) MM also predicts more dwells on outcomes than
7Schulte‐Mecklenbeck data: EV‐PH, b = 15.23, CI95% = (9.21–21.25).

8As some readers might be also interested in response times: the same analysis on response

times revealed similar results for the difference between EV‐PH, b = 38.68, CI95% = (36.49–

40.87), EV‐MM, b = 53.31, CI95% = (51.12–55.51), and PH‐MM, b = 14.63, CI95% = (12.44–

16.82), which is due to a high correlation between fixation frequencies and response times,

r = 0.958, CI95% = (0.954–0.961).
probabilities and fewer dwells on the maximum outcome than the

minimum one. Additionally, MM predicts equal distributions

irrespectively of the properties of information or the number of rea-

sons when the minimum outcome is not involved. Table 2 shows that,

overall, outcomes were fixated more frequently than probabilities,

supporting the findings of Schulte‐Mecklenbeck, Kühberger, et al.

(2017); see also Pachur et al., 2013), which is from a theoretical point

of view solely for EV a surprising finding. In addition, across all strate-

gies, we found equal distributions between large and small outcomes

as well as probabilities, which deviates from the findings of Schulte‐

Mecklenbeck, Kühberger, et al. (2017), who consistently found more

dwell on large outcomes and probabilities, respectively.
3.4 | Dwell times

The average dwell time was 705.2 ms (SD = 219.0 ms) in EV, 429.4 ms

(109.6 ms) in PH, and 362.5 ms (70.9 ms) in MM (see Figure 4).

Descriptive results were supported statistically by multilevel regres-

sion analysis with participants and gamble problem as random inter-

cepts and condition (EV, PH, and MM) as a fixed effect. The average

dwell time indeed was higher in EV than in both PH, b = 275.86,

CI95% = (258.45–293.27),9 and MM, b = 342.77, CI95% = (325.36–

360.19); the average dwell time was also higher in PH than MM,

b = 66.91, CI95% = (49.50–84.33). We additionally checked whether

the average dwell time is a valid measure to reflect differences of

information acquisition and processing behavior during decision‐

making according to our strategies; it would be also plausible that a

specific strategy leads to very long and very short dwell time, which

might not change the average but the distribution. Therefore, we

inspected histograms over dwell times revealing that dwell times were
9Schulte‐Mecklenbeck data: EV‐PH, b = 3.02, CI95% = (−3.18 to 9.23).

http://wileyonlinelibrary.com
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consistently longer in EV than in PH and MM as well as distributed

similarly (see Figure 5).

In sum, results confirmed our predictions but contrast the finding

of Schulte‐Mecklenbeck, Kühberger, et al. (2017) concerning dwell

times produced by PH and EV, which did not differ significantly.
4 | DISCUSSION

The investigation of cognitive processes requires process‐tracingmeth-

odologies allowing for correct inferences of covert processes based on

observable behavior. Almost all process‐tracing studies in JDM apply a

kind of reasoning called reverse inference (cf. Poldrack, 2006), and

therefore rely on a close mapping between overt behavior and covert

processes. As the mapping between overt and covert processes has

rarely been evaluated, it is unclear how many recent process tracing

studies committed the fallacy of reverse inference due to a violation

of its prerequisite. The aim of our study is to scrutinize the results from

Schulte‐Mecklenbeck, Kühberger, et al. (2017) who identified problems

with the prerequisite of reverse inference in risky choice due to mis-

matches of theoretically predicted and observed gaze behavior.
FIGURE 5 Histogram of the dwell time of all dwells for each of the
three strategies. [Colour figure can be viewed atwileyonlinelibrary.com]
Therefore, we applied an updated forward inference paradigm that

addresses three threats to the validity of the original paradigm used

by Schulte‐Mecklenbeck, Kühberger, et al. (2017): We used (a) gambles

that allow different predictions for the used decision strategies in all

cases; (b) a strategy check, which made sure participants executed the

instructed decision strategy, and (c) rewarded correct execution of a

given strategy. For the three instructed decision strategies, PH, EV,

andMM, we investigated four dependent measures (choices, dwell pat-

terns, dwell frequencies, and dwell times). In order to pursue our aim,

those measures can be evaluated from two perspectives: First, the rep-

lication of the findings from Schulte‐Mecklenbeck, Kühberger, et al.

(2017), and second, the matching of theoretically predicted and empiri-

cally observed gaze behavior.

Concerning the replication of the previous finding, we found similar

results for dwell patterns and overall dwell frequencies but not for dwell

times; we foundmixed results for the fine‐grained analyses of dwell fre-

quencies. Dwell patterns were attribute‐wise when participants applied

PH or MM; they were option‐wise when participants applied EV. Dwell

frequencies were highest when participants applied EV, followed by PH

and MM, sequentially. Across strategies, outcomes were fixated more

frequently than probabilities; large and small outcomes as well as large

and small probabilities were fixated equally frequent. The former result

is also consistent with previous work that also built on fine‐grained pre-

dictions (Johnson et al., 2008) as well as work on the distribution of

attention on outcomes and probabilities (Fiedler & Glöckner, 2012;

Glöckner &Herbold, 2011; Pachur et al., 2013; Su et al., 2013), but con-

tradicts findings on gaze behavior in proportion tasks that genuinely

recruit a weighting and adding process, and hence predict equal distri-

butions of fixations on outcomes and probabilities (Su et al., 2013).

The latter, however, also deviates from the previous findings from

Schulte‐Mecklenbeck, Kühberger, et al. (2017), proposing more dwells

on large outcomes and small probabilities. Dwell times were highest

when participants applied EV, followed by PH and MM, sequentially,

which also deviates from the previous findings proposing similar dwell

times in EV and PH. Furthermore, we found longer dwells in general,

which would associate gaze behavior in our study with a deeper level

of processing, whereas gaze behavior in the previous study would be

associated with a more superficial level of processing (Glöckner &

Herbold, 2011; Velichkovsky, 1999). Despite those deviations from

the previous study, we also found quantitatively more extreme results

across the measures that were in line with the previous results. For

dwell patterns, our results show an even stronger effect between EV

and PH, which is driven bymore attribute‐wise transitions in PH; for fix-

ation frequencies, the stronger effect between EV and PH is driven by

less dwells in PH.

The observation of the more extreme effect in our study could

be due to our improved forward inference paradigm consisting of a

strategy check, a different mode of incentivizing, and a set of gamble

problems in that each problem can be solved unambiguously apply-

ing either instructed strategy. By these means, our participants were

urged and capacitated to apply the instructed decision strategies.

Hence, we can likely rule out the possibility that participants eventu-

ally applied a simplified version of the instructed strategies, which

http://wileyonlinelibrary.com
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does not apply to the Schulte‐Mecklenbeck, Kühberger, et al. (2017)

data. Indeed, comparing both data sets, the application of simplified

versions of the strategy seems to be an adequate explanation for the

quantitatively different effects when considering all dependent mea-

sures. In contrast, we have no evidence to believe that the varied

presentation format might have introduced systematically different

gaze behavior and hence caused the different effects (Smith &

Krajbich, 2018).

Concerning the matching of theoretically predicted and empirically

observed gaze behavior, we found that our results correspond to our

predictions with respect to choices, dwell patterns, overall dwell fre-

quencies, and dwell times, but differ partially (8 out of 30 predictions)

with respect to the fine‐grained analysis of dwell frequencies (see

Table 2). As this perspective provides the targeted evaluation of the

mapping between overt and covert processes, our results suggest that

this prerequisite for reverse inference maintains for the most—but not

for all—measures. From this point of view, reverse inference is in some

occasions prone to produce fallacies due to a violation of its prerequi-

sites. Specifically, if one chooses an inadequate measure on that the

covert cognitive (decision) processes are reversely inferred.

With respect to EV, the prediction that the number of dwells on

outcomes and probabilities should be equal did not match our results.

Hence, we would suggest that an unequal number of dwell on out-

comes and probabilities should not be taken as evidence against EV,

and probably in favor of PH or MM. In fact, this mismatch has already

been found in previous studies of risky choice using reverse‐inference

(Fiedler & Glöckner, 2012; Pachur et al., 2013; cf. Stewart, Hermens, &

Matthews, 2015; Su et al., 2013). With respect to PH, the predictions

that there should be more dwell on the minimum outcomes and prob-

abilities than on the maximum outcomes and probabilities did also not

match our results. Instead, such properties of the gamble problem

were fixated equally often. Hence, we would suggest that an equal

number of dwells on the maximum and minimum outcomes and prob-

abilities should not be taken as evidence against PH. With respect to

MM, we found that maximum and minimum outcomes were fixated

equally often, which stands in a drastic contrast to the predictions.

According to the predictions, the decision is solely based on the min-

imum outcomes, and hence, the maximum outcomes can be almost

completely ignored. As this is not the case, we would argue that an

equal number of dwell on minimum and maximum outcomes should

be taken as evidence against MM.

4.1 | Limitations

Our conclusion, that reverse inference might be problematic in few

occasions comes with some limitations we divide into methodological

and theoretical ones.

4.1.1 | Methodological limitations

The methodological limitations target the artificial setting of a forward

inference task as well as our set of instructed decision strategies. In

our forward inference paradigm, we teach people the algorithmic
representation of decision strategies and we must rely on a full inter-

nalization of this representation. Certainly, we cannot rule out the

possibility that some other processes are going on that are unrelated

to the decision process such as retrieval processes for the instructed

strategy. However, we must also rely on the same assumption when

people spontaneously think about gambles. In our paradigm, we urge

people to process the algorithmic representation of the decision strat-

egy very closely, whereas in uninstructed settings, people can process

what and when they want. This brings us to the claim that such an

artificial setting might not the perfect, but a better way to examine

the mapping between covert and overt processes.

For our paradigm, we chose three different decision strategies

(maximizing the EV, the PH, and the MM). As for the former two, we

chose the same strategies as in the Schulte‐Mecklenbeck, Kühberger,

et al. (2017) study, because those strategies are well‐known among

decision scientists, make fundamentally different process predictions,

and are trainable. However, we suspected that people might deviate

from processing the algorithmic representation due to many calcula-

tion operations that are involved. To overcome this issue, we addition-

ally introduced the MM as the simplest possible decision strategy for

that we did not see any a priori reason that people might deviate from

processing the algorithmic representation closely. Hence, given the

mere amount of decision strategies in the literature, our three strate-

gies pose one possible subsample that pictures the variety of strate-

gies with regard to their difficulty (e.g., absolute amount of required

EIPs) and complexity (e.g., amount of different involved EIPs) and are

yet teachable. By choosing those strategies, we make no claim about

the plausibility of those strategies describing the true decision process.

Our reasoning was purely motivated to examine the mapping between

covert and overt processes in a forward inference paradigm.

For our paradigm, we also chose gambles that could be solved

applying either of the three different strategies. This constraint conse-

quently limits the selection of gambles to a small range that might

influence the generalizability of our results. We have applied this con-

straint in order to provide each of the three decision strategies with a

clear termination and to prevent any subsequent decision process and

hence gaze behavior that was not instructed. Thus, this feature of our

paradigm should have increased the mapping between covert and

overt processes. In terms of generalizability, we would expect an even

less close mapping than we have observed when applying a more rep-

resentative gamble set.

4.1.2 | Theoretical limitations

We evaluate the mapping between overt and covert processes by

comparing theoretically predicted and empirically observed gaze

behavior. By doing so, our evaluation and hence our conclusion cru-

cially depends on the quality of the employed predictions. Therefore,

the hitherto existing interpretation of our and the previous results

must be contrasted with the alternative explanation that we just

used poor predictions for the gaze behavior that should be observed

given our decision processes. The mere fact that we only used

canonical predictions that have already been employed in the recent
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literature cannot invalidate this limitation completely. Though,

questioning the quality of the predictions we commonly use in

eye‐tracking studies, sketches a promising future application of our

forward inference paradigm.
4.2 | Future directions

Assuming that reverse inference is unproblematic given good predic-

tions, forward inference can be applied to check and improve the qual-

ity of the hitherto used prediction. From this perspective, our results

suggest that some of the canonical predictions concerning dwell fre-

quencies are poor, though they yield some validity with respect to

the differentiation between decision processes. This becomes evident

by employing a data‐driven machine learning approach to learn from

the forward‐inference data the mapping between covert cognitive

processing and overt gaze behavior (for related approach, please see

Król & Król, 2017). Overall, the results show that our decision pro-

cesses can be classified with high accuracy using different combina-

tions of gaze measure. Furthermore, the results show that the dwell

distribution on specific gamble properties as used in the fine‐grained

analysis of dwell frequencies increases the classification accuracy

when they are used exclusively or in combination with two of the

other measures. However, the dwell patterns and the dwell frequen-

cies seem to produce the strongest combination of gaze measures to

discriminate our decision strategies (for more details, see Appendix

B). Hence, different decision processes lead to different gaze behav-

iors, which is revealed across all gaze measures. In order to rehabilitate

reverse inference, forward inference is a promising tool to identify

poor predictions and to convert them into accurate predictions.

By this application, forward inference could help to convey JDM

research into a more proces‐orientated paradigm (Oppenheimer &

Kelso, 2015; Scherbaum, Dshemuchadse, & Kalis, 2008; Schulte‐

Mecklenbeck, Johnson, et al., 2017). In Marr's (1982) terminology, for-

ward inference could help to switch decision theory from the compu-

tational level, where problems are specified in the generic manner to

the algorithmic level describing how exactly the computational prob-

lems are solved. Hence, forward inference provides a framework in

order to obtain that switch as it delivers process data from specific

cognitive processes that can in turn be used to build models of

decision‐making on the algorithmic level or to refine computational

models towards the algorithmic level.
5 | CONCLUSION

Our study demonstrates that a forward inference paradigm is a useful

framework to evaluate the mapping between overt information pro-

cessing as indicated by gaze behavior and covert cognitive processes

as predicted by decision‐making models. Our experiment was

designed to scrutinize the Schulte‐Mecklenbeck, Kühberger, et al.

(2017) findings applying an improved forward inference paradigm.

Overall, we found mixed results with respect to the validation of the

previous findings, though we draw a similar but more accentuated
conclusion: our findings shed doubts on recent JDM research having

committed the fallacy of the reverse inference due to a violation of

its prerequisite. Even though the mapping between gaze decision pro-

cesses seems sufficiently high, the identification of decision processes

crucially depends on the quality of the model's predictions. We identi-

fied several predictions that might lead to erroneous reverse infer-

ences. Therefore, the usage of stronger predictions would restore

the prerequisite and could hence rehabilitate reverse inference. To

accomplish this aim, our improved forward inference paradigm might

be an adequate methodology.

6 | CONTEXT OF THE RESEARCH

The research reported in this article originated when the first, third,

and last author searched for eye‐movement data in which it was clear

what process has been applied during decision‐making. The second

author yielded such a data set and shared his data and manuscript

(at that time submitted). The first author identified the provided data

set to be unsuitable for investigating his initial research question due

to methodological limitations as discussed in this article. The first,

third, and last author decided to collect more suitable data by applying

an improved version of the second author's paradigm. The first author

planned and programmed the new paradigm based on the initially

shared manuscript. The first author also managed data collection and

conducted data analysis. By then, the second author's manuscript

had been accepted for publication (see Schulte‐Mecklenbeck,

Kühberger, et al., 2017). As the second author is an expert in the field

and since was involved in the new work by his early sharing of unpub-

lished data and manuscript, the first and last authors invited the sec-

ond author to support the current work as a co‐author. Final editing

of the manuscript was done by all authors.
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ble B
TABLE A1 The 21 gamble problems presented in the paradigm

Gamble A G
n 1 Option 2

P1 O2 P1 EV‐R Reasons

80 10 20 1,72 1

60 9 40 0,75 1

60 4 40 1,29 1

60 10 40 0,54 1

80 10 20 2,22 1

60 15 40 1,20 1

80 9 20 1,88 1

80 9 20 1,36 2

70 18 30 1,20 2

70 18 30 0,90 2

60 16 40 0,83 2

70 15 30 1,25 2

60 18 40 0,85 2

60 18 40 0,85 2

80 8 20 1,35 3

65 18 35 1,15 3

75 11 25 1,08 3

65 15 35 0,92 3

70 15 30 1,11 3

75 18 25 0,92 3

75 17 25 0,95 3

). EV‐R denominates the ratio of the expected values of both gamble options.
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APPENDIX B

In the introductory part of this article, we argued that a forward

inference paradigm can be used to evaluate the mapping between

covert cognitive processing and overt observable behavior. Beside

the mere evaluation of the mapping, forward inference paradigm

can also be applied to adopt a more data‐driven approach to

enhance our reverse inference on cognitive processes. In this

respect, a machine learning approach might be a promising path

in order to learn from the forward‐inference data what

eye‐movement measures best characterize the different cognitive

processes. Eventually, the trained classifier could be used to identify
TABLE B1 Overview of the predictive accuracy and theTPR of trained line
measures

Dwell
pattern

Dwell
frequency

Dwell
time

Fine‐grained
analyses*

X — — —

— X — —

— — X —

— — — X

X X — —

X — X —

X — — X

— X X —

— X — X

— — X X

X X X —

X X — X

X — X X

X X X X

Note. The predictor “fine‐grained analyses” summarizes the inclusion of four a

and Pmin.

Abbreviations: EV, expected value; MM, minimax heuristic; PH, priority heurist
cognitive processes in reverse‐inference data (cf. Greene, Liu, &

Wolfe, 2012).

As a first step in this direction, we trained linear support vector

machines fed with various combinations of standardized eye‐movement

measures using a 10 fold cross‐validation (see Table B1 and Figure B1).

In this validation method, the data are partitioned into a specific number

of bins (i.e., folds). The classifier is trained for each fold using all the data

outside the respective fold; the performance of the classifier is in turn

tested using the data inside the fold. The predictive accuracy of the final

classifier is the average accuracy over all folds. The generation of the

dataset as well as the fitting and validation of the classifiers is covered in

our analysis script (available online).
ar SVMs fed with various combinations of standardized eye‐movement

Classification
accuracy (in %)

TPR (in %)

EV PH MM

70.10 98.77 80.65 30.88

71.12 45.31 73.89 94.16

51.41 70.51 15.67 68.05

82.23 95.39 62.21 89.09

93.65 99.39 88.33 93.24

79.77 98.46 71.27 69.59

91.91 98.92 87.25 89.55

83.56 83.72 73.58 93.39

86.23 94.01 70.66 94.01

83.46 90.94 70.20 89.25

94.06 99.08 89.71 93.39

94.67 99.08 90.63 94.32

92.17 98.92 88.02 89.55

‐‐ 95.03 ‐‐ 99.08 91.40 94.62

dditional predictors: the standardized ratio of dwells on Omax, Omin, Pmax,

ic; SVM, support vector machine; TPR, true positive rate.



FIGURE B1 Confusion matrices for the best performing classifier within each number of predictor combinations as printed in bold in Table B1.
Panels A–D matches the order from top to bottom inTable B1. The true positive rate and the false negative rate are depicted on the right side of
each panel; the positive predictive values and the false discovery rates are depicted below each panel. Note: the confusion matrices for the
remaining classifiers can easily be plotted using our analysis script available online. [Colour figure can be viewed at wileyonlinelibrary.com]
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