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For centuries, those interested in understanding human 
decision behavior have observed choices to make infer-
ences about the reasoning behind those choices. For 
example, researchers studying gambles derived predic-
tions about choices based on risk preferences (Bernoulli, 
1738), rational choice principles (Morgenstern & von 
Neumann, 1944), or psychological constructs like loss 
aversion (Kahneman & Tversky, 1979). Choice data 
were sufficient for examining these algebraic models 
that dominated the field. In the last 40 years, an increas-
ing number of studies have included process-tracing 
data. These studies provided insight into the processes 
underlying choice and aided the development of more 
predictive explanatory models. This development was 
a natural complement to the “cognitive revolution” that 
shaped much psychological science in the second half 
of the 20th century. For decision research, this involved 
an increase in the building of models that describe in 
detail how an individual’s actions can be linked back 
to its cognitive architecture. As a result, a substantial 
mass of process evidence as well as a slate of corre-
sponding process-oriented theoretical accounts have 
been produced to improve and extend models of choice 

(e.g., Johnson & Ratcliff, 2014). In this paper, we illus-
trate the breadth of process-tracing methods (see Table 
1) and offer a first attempt at a classification of this rich 
and developing set of techniques (see Fig. 1). Our goal 
is to assist researchers in considering such techniques 
to test and validate their theories, models, and hypoth-
eses about processing constructs.

Process tracing defined

For the purposes of this paper, we operationally define 
process-tracing data as time-dependent, predecisional 
observations. These observations inform theories on 
the psychological mechanisms assumed to operate prior 
to choice. Table 1 displays the most commonly used 
process-tracing methods in decision research. We 
differentiate four groups of methods: Subject reports 
contain methods that target decision strategies through 
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recording the verbalized thoughts of participants. 
Movement-based measures provide data on information 
search patterns. Peripheral psychophysiological mea-
sures quantify arousal and cognitive effort. Finally, ele-
ments of neural processes are studied using a vast array 
of neural techniques, such as functional MRI (fMRI), 
which collects estimates of neural metabolism as a 
proxy for neuron firing rates. Collectively, Table 1 pro-
vides a current snapshot of the impressive and diverse 
array of techniques sharing one element in common: 
the measurement of proxies for unobservable mental 
processes.

We next differentiate process techniques on two axes 
we feel are important for selecting any given method. 
First, distortion risk, is a potential barrier to theory test-
ing; the more intrusive a method is on the measured 
process, the more careful one should be in interpreting 
the resulting data. Distortion risk includes at least three 
components: demand effects caused through applying 
a measurement (e.g., with cameras or microphones); 
reactive effects include distorting information by access-
ing it, for example through altering one’s strategy based 
on information presentation formats; and degree of 
removal from a naturalistic environment, such as the 
artificial nature of lying in the bore of an MRI machine. 
Our second axis, time resolution, is instrumental to 
theory building and refinement, defining the possible 
measurement rate of a method. This assesses how 
closely each method maps a process.

Although it is clear that both distortion risk and time 
resolution have an effect in every measurement, we rated 
methods that potentially have more influence on the par-
ticipant (e.g., the loud environment in an MRI tube) in 
one or more components further right on the x scale in 
Figure 1, compared to those methods with less influence 
on this dimension (e.g., remote eye-tracking). For most 
of these methods, the degree of distortion is not well 
understood, as it has not been investigated systematically 
(with some exceptions, e.g., Ericsson & Simon, 1992). Still, 
Figure 1 allows researchers to examine how the various 
techniques differ in their time resolution and potential 
risk of distorting the measured decision process.

What Can Process data do For You?

As theories in decision research become increasingly 
process-oriented, we argue here again that “process 
models deserve process data” ( Johnson, Schulte-
Mecklenbeck, & Willemsen, 2008, p. 263). In fact, pro-
cess data are especially critical in areas where multiple 
theories propose different underlying mechanisms but 
make similar predictions for outcome variables such as 
choice or response time. Process data can provide evi-
dence on theoretical positions, can illuminate regularities 

otherwise hidden, and can increase the predictive power 
of process models (e.g., Krajbich, Armel, & Rangel, 
2010). Furthermore, they ultimately lead to the develop-
ment or refinement of richer theories that are better 
specified at the process level. Below, we give several 
examples to elaborate on these points.

Analyzing subject reports for evidence of  
decision-making strategy
A concurrent verbal protocol is an articulation of 
thoughts occurring to a person as he or she undertakes 
a primary task. Verbal protocols featured prominently 
in problem-solving research during the 1960s and 
1970s (Simon & Newell, 1972), especially for analytic 
thinking tasks such as logic or chess. Such tasks can 
provide valid verbal protocols when the contents of 
short-term memory during their execution are largely 
verbally encoded, requiring only articulation. Despite 
these influential early contributions, verbal protocols 
have had more limited success in recent decision 
research. Computerized transcription methods (e.g., 
Lin & Yu, 2015) may help ameliorate one barrier to 
use of this method by drastically reducing analysis 
time.

Recording movement-based measures to determine  
information used in decisions
Tracking eye movement has been used as a proxy for 
tracking attention and inferring thought processes in 
psychology for decades (Yarbus, 1967). Although the 
earliest techniques were often intrusive (using contact 
lenses), today eye trackers are either head mounted 
(e.g., via special glasses; Bulling & Gellersen, 2010) or 
remote mounted, via infrared cameras that record eye 
movements and map their positions on a computer 
screen without participants’ awareness (Holmqvist 
et  al., 2011). Measurements of attention, including 
where and how long the eyes rest (“fixations”), are 
assumed to indicate signal processing ( Just & Carpen-
ter, 1980), although such an assumption is still under 
critical examination (see Russo, 2011).

Recording peripheral psychophysiology to estimate 
valence
Linking facial expressions to emotions has been the 
realm of trained human coders for several decades. 
More recently, the development of fEMG and video-
based facial expression analysis have revolutionized 
this field. In an fEMG study, sensors are placed on the 
participants’ face recording muscle contraction—put-
ting it higher on the risk of distortion. In video-based 
analysis, muscle movement is recorded via video cam-
era and then compared to a database of classified facial 
expressions. Both methods are relatively new and are 
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still evaluated more broadly (Stöckli, Schulte-Mecklenbeck, 
Borer, & Samson, 2017).

Neural techniques to look under the hood
As all decisions are ultimately the result of neuronal 
firing, understanding how neurons and clusters of brain 
regions respond and interact during choice can provide 
invaluable insights into decision processes. Currently, 
fMRI is perhaps the most popular technique for probing 
the decision process on a neural level. One drawback 
is fMRI’s limited temporal and spatial resolution, often 
on the order of 1 to 3 s and 1 to 3 mm3, due to both 
hardware constraints as well as the sluggishness of the 
blood-oxygen-level-dependent (BOLD) response it 
measures. With neuron firing rates on the order of mil-
liseconds, this presents a significant limitation for cap-
turing neural processes in real time as with other 
measures.

Validating Formal Mental Models With 
Process-tracing Measures 

Much of the empirical research compares measures 
collected from these techniques across discrete groups. 
Going a step further, process data from individuals can 
directly discriminate among sufficiently precise, pro-
cess-level theoretical accounts. For example, although 
the drift diffusion model (DDM; Ratcliff, 1978) has 
provided a process-driven, accurate account for both 
choices and response time distributions, integrating 
eye-gaze data into the traditional DDM model fits data 
better and has been subsequently used as the founda-
tion of new neural and psychological theories on the 
decision process (e.g., Krajbich et al., 2010). These 
models invoke constructs such as shifting attention 
toward different information, which produces changes 
in relative preference for each option over time. Addi-
tionally, Parallel Constraint Satisfaction (PCS) models 
suggest a reciprocal influence of momentary preference 
on subsequent information-seeking (see Busemeyer & 
Johnson, 2004, for comparison of these and other pro-
cess models). Process measures can help us verify theo-
retical claims made about each of these. For example, 
eye-tracking can identify the shifting order of attention 
to different features in a choice setting, the relative time 
spent on a particular feature, sequential dependencies 
over time, and more (e.g., Stewart, Hermens, & 
Matthews, 2016). Relative preferences have been esti-
mated by the physical movements in reaching for (or 
selecting with a computer mouse) competing choice 
options assumed to coincide with the ongoing cognitive 
process (Spivey & Dale, 2006). For decision research, 
this affords data-driven inferences about the approach 

tendency toward both foregone and selected choice 
options captured in real time during a choice, enabling 
us to test competing process models. Theories stand to 
benefit in unique ways from process tracing, such as 
in the growing body of research in neuroeconomics 
where eye-tracking data have helped to better under-
stand strategic interactions and social preferences from 
a game theoretic perspective (e.g., Polonio, Di Guida, 
& Coricelli, 2015).

How to Get Started With Process 
tracing—A Five-Step Approach

Given the broad range of techniques available, it can 
be somewhat daunting to explore the use of process 
tracing for the novice. We offer one way, in five steps, 
to approach the development and implementation of a 
successful study:

1) Clearly articulate what mental “process” is involved 
and how it relates to the behavior under investigation. 
As with any research program, developing research 
questions and hypotheses requires a solid grounding 
in psychological theory and the previous research 
findings.

2) Determine (ideally multiple) ways to operationally 
define your processing constructs given the range of 
methods available. Table 1 provides a way to begin the 
mapping of psychological constructs to process mea-
sures and variables and offers a classification of the 
required skill level for each of the listed methods.

3) Consider among the viable methods those that meet 
design concerns, especially temporal resolution and 
distortion risk. To address your question: What are 
acceptable levels of distortion? What would be the 
optimal time resolution for the key phenomena under 
study? Figure 1 allows one to estimate these dimen-
sions and constrain the set of possible methods.

4) Become acquainted with the technique(s) you’ve 
chosen by reading multiple methodological and appli-
cation papers. It is critical to develop the skills and 
knowledge required to collect, analyze, and interpret 
process-tracing data; for example, computer coding, 
advanced statistics, and learning established proce-
dures may be needed. Table 1 lists one representa-
tive application for each method.

5) Implement the technique carefully using the skills 
and knowledge you’ve gained, and explore various 
means of benefiting from the resulting data. The 
abundant nature of process data lends itself to 
sophisticated approaches to drawing inferences, 
such as formal computational modeling of processes 



448 Schulte-Mecklenbeck et al.

informed and verified by the data, or estimating 
effects with multilevel statistical models to analyze 
repeated-measures data and heterogeneity.

Quo Vadis? Challenges and 
Opportunities

It is an ideal time for incorporating process-tracing data 
into research programs. Free software like Mousetracker 
(Freeman & Ambady, 2010) or MouselabWeb (Willemsen 
& Johnson, 2011) provides easy-to-use, flexible tools 
that can be adopted to new research questions, includ-
ing online behavior (Goldstein, Suri, McAfee, Ekstrand-
Abueg, & Diaz, 2014; Liu et al., 2017) or interactive 
games (Costa-Gomes, Crawford, & Broseta, 2001).

A major advantage of process-tracing techniques is 
their ability to both inform and build on our knowledge 
of cognitive neuroscience. For example, fMRI and EEG 
data have identified neural circuits involved in the deci-
sion process, as well as their temporal relationship 
(e.g., van Vugt, Simen, Nystrom, Holmes, & Cohen, 
2014). Changes in heart rate and skin conductance have 
lent important insights into the cognitive process when 
anticipating losses in risky choices (Crone, Somsen, 
Beek, & Van Der Molen, 2004). Methods such as tran-
scranial magnetic stimulation allow researchers to 
actively intervene in the neural substrates behind a 
decision process to observe behavioral change (Peters 
& Büchel, 2011). Furthermore, computational models 
are well equipped to formalize cognitive mechanisms 
to produce these data (see Forstmann, Ratcliff, & 
Wagenmakers, 2016).

New technologies let process-tracing experiments 
overcome limitations inherent in laboratory settings, 
like small samples, and thus improve external validity. 
Various “quantified self” devices allow for ongoing data 
collection on a large scale (Swan, 2009). Mobile phones, 
smartwatches, and even earbuds now can record many 
process measures, including heart rate, skin conduc-
tance, and geographic location, providing rich oppor-
tunities for mobile process tracing and experience 
sampling. In the lab, stationary eye trackers have 
improved in usability, resolution, data quality, and 
affordability. Portable eye trackers are now inexpensive 
enough for labs to run multiple eye trackers to inves-
tigate phenomena among groups of participants inter-
acting with one another (Lejarraga, Schulte-Mecklenbeck, 
& Smedema, 2016). Scaling up this idea, it is also pos-
sible to simply use an available webcam on a partici-
pant’s computer and access this information to track 
gaze for large samples online (Xu et al., 2015).

Looking back across many years of process-tracing 
research, methods have evolved from information 

displayed on bulletin boards and recording people’s 
listed thoughts, to eye-tracking devices recording atten-
tion, information search, and arousal, to microcomput-
ers running on mobile phones that can record movement 
patterns. That said, process tracing is still evolving as 
a scientific method to which we offer two important 
areas for further development. First, we must increase 
the number of actual tests of the proposed processes. 
There are many models available for making process 
predictions, but often these predictions are not directly 
tested. Second, having achieved a critical mass, there is 
a newfound need for norms and “best practices” that 
have not yet been established. Having developed from 
a niche area to hundreds of applications, process- 
tracing research needs standards for how to collect, 
report, archive, and share data (e.g., Fiedler, Schulte-
Mecklenbeck, Renkewitz, & Orquin, 2017, as an exam-
ple for eye tracking). An excellent start would be the 
exploration of the distortion risk components and other 
key constructs we have identified. More than 10 years 
ago, Ariel Rubinstein (2003) wrote, “We need to open 
the black box of decision making” (p. 1215). We believe 
that the methods in this review allow us to open the 
box wide and help us understand what we find inside.
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